
Module : Analyse de données avec Python

Objectifs

Présentation générale du cours
 Le nom du cours
 Analyse de données avec Python :

 Volume horaire
 08 heures
 Cours + TP

 Contenu

 Chapitre 1 : Introduction au Python  un cours DE python

 Chapitre 2 : Python pour l’analyse de données  un cours EN python

 Objectifs
 Syntaxe de base et structures de données en Python.
 Exploration et traitement de données avec Python.

Plan
Chapitre 1 : introduction au Python

 Présentation de Python

 Les variables et les types de valeurs

 Les structures de contrôle

 Les données composites

 Les fonctions

 Les modules standard et paquets Python

Chapitre 2 : Python pour l’analyse de données

 Exploration de données avec Pandas et NumPy

 Visualisation avancée des données avec Matplotlib et Seaborn

 Machine Leraning et L'analyse prédictive

Présentation de Python

Historique et Définition
 Le langage de programmation Python a été créé en 1989 par Guido van

Rossum
 La première version publique du langage est sortie en 1991.
 La dernière version de Python est la version 3
 Python est :
 Multiplateforme.
 Gratuit.
 Un langage de “très haut niveau”
 Un langage interprété.
 Un langage orienté objet
 Modulable et extensible.

Utilisation de python
 Développement Web
 Science des Données et Analyse de Données

 Bibliothèques : Pandas, NumPy, Matplotlib, Seaborn, Plotly.
 Analyse de données, visualisation, manipulation et nettoyage de grands ensembles de données.

 Intelligence Artificielle et Machine Learning
 Développement d’Applications Desktop
 Développement d’Applications Scientifiques
 Sécurité et Cybersécurité
 Développement de Jeux Vidéo
 Traitement des Données et Fichiers
 IoT et Robotique
 Big Data et Cloud Computing
 Traitement d’Images et Vidéos
 Création d'APIs et Microservices
 …

Comment utiliser pyhon ?

Comment
utiliser pyhon ?

Comment utiliser pyhon ?
 Deux environnements faciles pour exécuter du code Python sans installation :

1. Google Colab (Google Labs) :

 Accessible en ligne, aucun logiciel à installer

 Aller sur : https://colab.research.google.com

 Cliquer sur "Nouveau Notebook" ou ouvrir depuis Google Drive

2. Jupyter Notebook :

 Utilisé localement ou sur serveur, très flexible

 Télécharger Anaconda : https://www.anaconda.com/products/distribution

 Installer Anaconda (Python inclus)

 Ouvrir Anaconda Navigator, puis lancer Jupyter Notebook

Syntaxe de base - Commentaires
 Pour ajouter un commentaire dans un code Python, on utilise le signe #.

Syntaxe de base - Notion de bloc d'instructions et
d'indentation

 En Python, l’indentation est utilisée pour définir des blocs de code, c’est-à-
dire pour indiquer à l’interpréteur quelle instruction appartient à quelle
autre. l'ensemble des lignes indentées constitue un bloc d'instructions.

Bloc
d’instruction

Indentation

Les variables et les types de valeurs Python

Variables et opérateur d’affectation
 Une variable est une zone de la mémoire de l’ordinateur dans laquelle une

valeur est stockée.

 Aux yeux du programmeur, une variable est définie par un nom, alors que
pour l’ordinateur, il s’agit en fait d’une adresse, c’est-à-dire d’une zone
particulière de la mémoire.

 En Python, la déclaration d'une variable et son initialisation (c'est-à-dire
la première valeur que l'on va stocker dedans) se font en même temps.

Paris

Ville

70123

Code_Postal

Dubois

Nom

Alice

Prenom

32

Age

Variables et opérateur d’affectation
 Python a « deviné » que la variable était un entier. On dit que Python est un langage au

typage dynamique.
 Python a alloué (réservé) l'espace en mémoire pour y accueillir un entier. Chaque type de

variable prend plus ou moins d'espace en mémoire. Python a aussi fait en sorte qu'on
puisse retrouver la variable sous le nom x.

 Enfin, Python a assigné la valeur 2 à la variable x (affectation).
Dans d'autres langages (en C par exemple), il faut coder ces différentes étapes une par une.
Python étant un langage dit de haut niveau, la simple instruction x = 2 a suffi à réaliser les 3
étapes en une fois !

Variables et opérateur d’affectation
 Sous Python, on peut assigner une valeur à plusieurs variables

simultanément.
 On peut aussi effectuer des affectations parallèles à l'aide d'un seul

opérateur
Affectations multiples

Affectations parallèles

Nommage
 Le nom des variables en Python peut être constitué de :
 lettres minuscules (a à z)
 lettres majuscules (A à Z)
 nombres (0 à 9)
 caractère souligné (_).
 Vous ne pouvez pas utiliser d'espace dans un nom de variable.

 Par ailleurs, un nom de variable ne doit pas débuter par un chiffre et il
n'est pas recommandé de le faire débuter par le caractère _ (sauf cas très
particuliers).

 De plus, il faut absolument éviter d'utiliser un mot « réservé » par Python
comme nom de variable (par exemple : print, range, for, from, etc.).

 Et, bien que possible avec Python 3, l’utilisation de caractères accentués
dans les noms des variables est fortement déconseillée.

 Enfin, Python est sensible à la casse, ce qui signifie que les variables TesT,
test et TEST sont différentes.

Affichage
 Pour afficher la valeur à l'écran, il existe deux possibilités. :
1 - La première consiste à entrer au clavier le nom de la variable, puis <Entrée>.

2 - l'instruction print :

Affichage
 la fonction print() affiche l'argument qu'on lui passe entre parenthèses et un retour à

ligne.
 La fonction print() peut également afficher le contenu d'une variable quel que soit

son type. Par exemple, pour un entier :

 Il est également possible d'afficher le contenu de plusieurs variables

 A l'intérieur d'un programme, vous utiliserez toujours l'instruction print.

Saisie de données
 Pour permettre à l’utilisateur d’un programme de saisir la valeur d’une

variable x, on utilise la fonction input(),
 ATTENTION : la variable saisie est toujours de type str. Pour la convertir en

nombre, il faut utiliser la fonction int() ou la fonction float() :

Quelle est, à votre avis, l'utilité de la fonction type() ?

 x = int(input("saisir la valeur de x : "))

 Écrivez un programme en Python qui demande à l'utilisateur de saisir son
nom, puis affiche un message de salutation personnalisé.

Exercice
 Écrivez un programme en Python qui demande à l'utilisateur

de saisir deux nombres entiers. Le programme doit ensuite
calculer la somme de ces deux nombres et afficher le résultat.

Saisie de données
 Exemple

Les types de variables

Types Simples Types Composites

 Nombre (integer/float) : 976, 0.14, -
9.99)

 Chaîne de caractères (str) : "Salut"
 Booléen (boolean) : True, False
 Aucune valeur : None

 Liste : [1, 2, 3]
 Tuple : (1, 2, 3)
 Dictionnaire : { "Nom" : "Ali", "Age" :

29}
 Ensemble (Set) : { "Ali", 29,

"Etudiant"}

Les nombres

 entiers (integer ou int) : réels ou virgules flottantes (float)

Les nombres – Opérateurs arithmétiques
 Opérations sur les types numériques - opérateurs

Opération Résultat

x + y somme de x et y

x - y différence de x et y

x * y produit de x et y

x / y quotient de x et y (division réelle)

x // y quotient entier de x et y (division entière)

x % y reste de x sur y (modulo)

abs(x) valeur absolue de x

int(x) x converti en nombre entier

float(x) x converti en nombre à virgule flottante

x ** y x à la puissance y

Les nombres – Opérateurs arithmétiques
 Opérations sur les types numériques - opérateurs combinés : permet

d’effectuer une opération et une affectation en une seule étape,

Opérateur Exemple Raccourci pour

+= x += 5 x = x + 5

-= x -= 3 x = x – 3

*= x *= 6 x = x * 6

//= x //= 2 x = x // 2

= x=4 x = x ** 4

%= x%=5 x = x % 5

Les chaines de caractères

il faut l'entourer de guillemets
 doubles
 simples,
 trois guillemets successifs doubles ou simples)

Les chaines de caractères
 Opérations sur les chaînes de caractères : Pour les chaînes de caractères, deux

opérations sont possibles, l'addition et la multiplication :

Opérations
 Opérations illicites

 Notez que Python vous donne des informations dans son message d'erreur.

Exercice
 Essayez de prédire le résultat de chacune des instructions suivantes, puis

vérifiez-le dans l'interpréteur Python :
1) (1+2)**3
2) "Da" * 4
3) "Da" + 3
4) ("Pa"+"La") * 2
5) ("Da"*4) / 2
6) str(4) * int("3")
7) int("3") + float("3.2")
8) str(3) * float("3.2")
9) str(3/4) * 2

= 27
= 'DaDaDaDa’
TypeError
= 'PaLaPaLa’
TypeError
= '444’
= 6.2
TypeError
'0.750.75'

Les Booléens
 Un booléen est un type simple de

Python qui n'a que deux etats.
 Les Booléens sont basés sur la prise des

décisions.
 Deux valeurs possibles : True (Vrai) ou

False (faux)
 Exemple :

Si le feu est rouge, alors arrête-toi.

Les Booléens

Les opérateurs de comparaison opérateurs logiques

 les expressions booléennes sont le plus souvent constituées :

Opérateur Signification

< strictement inférieur

<= inférieur ou égal

> strictement supérieur

>= supérieur ou égal

== égal

!= different

Opérateur Signification

AND
Renvo ie True s i toutes l es deux
expressions sont évaluées à True

OR
Renvoie True si une des comparaisons
vaut True

NOT
Renvoie True si la comparaison vaut
False (et inversement)

Les Booléens
Les opérateurs logiques :

 Les opérateurs logiques créent des conditions composées dans une formule

• AND : Vrai lorsque les deux valeurs sont vraies

• OR : Vrai si l'une ou l'autre des deux valeurs est vraie

• NOT : Fait passer une valeur de faux à vrai, ou inversement

 Les tables de vérités :

Les structures de contrôle

Les structures de contrôle

 Les structures de contrôle sont les groupes d'instructions qui déterminent
l'ordre dans lequel les actions sont effectuées dans le programme.

ints1

ints2

ints3

ints1

ints2

ints1

Séquence d'instructions
 Sauf mention explicite, les instructions d'un programme s'exécutent les

unes après les autres, dans l'ordre où elles ont été écrites à l'intérieur du
programme.

 Le « chemin » d’exécution est appelé un flux d'instructions, et les
constructions qui le modifient sont appelées des instructions de contrôle
de flux.

 Python exécute normalement les instructions de la première à la
dernière, sauf lorsqu'il rencontre une structures de contrôle comme une
instruction conditionnelle « if ». Une telle instruction va permettre au
programme de suivre différents chemins suivant les circonstances.

Les instructions conditionnelles
 Une condition (test) est une expression écrite entre parenthèse à valeur

booléenne.
 Les instructions conditionnelles (if en python) servent à n'exécuter une

instruction ou une séquence d'instructions que si une condition est vérifiée.

Les instructions conditionnelles
Forme 1 : if
 La valeur de la condition sera interprétée en True ou False . Si la condition

est correcte (évaluée à True) : le bloc d’instructions s’exécuté

>>> a = 150
>>> if (a > 0):
... print("nombre positif ")
...

if condition :
 bloc d'instructions

Indentation obligatoire

Les instructions conditionnelles
Forme 2 : if … else
 Si la condition mentionnée après if est VRAI (True), on exécute le bloc 1; si

la condition est fausse, on exécute le bloc 2 d’instructions.

>>> a = 150
>>> if (a > 0):
... print("nombre positif ")
... else:
... print("nombre négatif ou nul")
...

if condition :
 bloc 1 d'instructions

else :
 bloc 2 d'instructions

Exercice
 Écrire un programme python qui demande un nombre entier à l'utilisateur,

puis qui teste et affiche s'il est négatif ou positif.

Les tests :
Forme 3 : Les tests imbriqués
 On peut faire mieux encore en utilisant aussi l'instruction elif (contraction de

« else if »)

>>> a = 150
>>> if (a > 0) :
... print("nombre positif ")
... elif (a < 0) :
... print("nombre négatif ")
... else :
... print("nombre nul")
...

if condition 1 :

 bloc 1 d'instructions

elif condition 2 :

 bloc 2 d'instructions

else :

 bloc 3 d'instructions

Les boucles (Rappel)
 Instructions itératives : les boucles
 Les boucles servent à répéter l'exécution d'un groupe d'instructions un certain

nombre de fois
 On distingue deux sortes de boucles en langages de programmation python :
 Les boucles (while) : Répéter une action tant qu'une condition est vraie.

 Exemple : Tant que je n'ai pas trouvé mes clés, je cherche dans chaque pièce de la maison.

 Les boucles (for) : Répéter une action un nombre spécifique de fois.
 Pour chaque jour de la semaine, je fais une activité différente.

ConditionInstruction(s)
Une Condition est une expression qui peut êtres
évaluée en True ou False

La boucle while
 La boucles while permet de répéter des instructions tant qu'une certaine

condition est réalisée.

while condition :

Blocs instruction A

La boucle while

Les boucles - while
 La structure répétitive while permet d’effectuer une instruction ou des

instructions (Bloc d’instructions) tant qu’une condition est satisfaite (évaluée
à True)

 Ce qui signifie : tant que la condition est vraie, on exécute le bloc
d’instructions.

while condition :

Blocs instructions

i=0
while i<10:
 print("bonjour")

i=0
while i<10:
 print("bonjour")
 i+=1

Boucle infinie :
Bonjour s’affiche infiniment (sans
arrêt)

Boucle correcte :
Bonjour s’affiche 10
fois.

Exemple 2Exemple 1

Exemple pratique
 Supposons que nous voulons écrire un programme qui demande

à l'utilisateur de saisir un mot de passe. La boucle continuera
jusqu'à ce que l'utilisateur saisît le mot de passe correct. .

 Mot de passe correct : PWD@2023

Exemple pratique
Supposons que nous voulons écrire un programme qui demande à
l'utilisateur de saisir un mot de passe. La boucle continuera
jusqu'à ce que l'utilisateur saisît le mot de passe correct.

mdp = input("Saisir le mot de passe : ")
while (mdp != "PWD@2023") :
 print(" mot de passe incorrect ")
 mdp = input("Saisir à nouveau le mot de passe : ")
print("Mot de passe correct - Bienvenue - ")

La boucle for
 Dans la plupart des langages de programmation, la structure répétitive for permet de répéter des

instructions un certain nombre de fois.

 En python, une boucle for est utilisée pour itérer sur une séquence (c’est-à-dire une liste, un tuple, un
dictionnaire, un set, un intervalle de valeurs, ou une chaine de caractères). Autrement dit, elle
permet de parcourir une séquence du premier au dernier élément.

Exemple d’utilisation : Affichage après exécution :

itérateur
Bloc de code

éléments de l’itérateur

La boucle for
 La boucle For peut parcourir une séquence de nombres en utilisant la fonction “range“. La fonction

range () renvoie une séquence de nombres, commençant par 0 par défaut et incrémentée de 1 (par
défaut), et s’arrête avant un nombre spécifié. Syntaxe : range(start, stop, step) avec :
Ø start (facultatif) : Un nombre entier spécifiant à quelle position commencer. La valeur par défaut

est 0.
Ø stop (Requis) : Un nombre entier spécifiant à quelle position s’arrêter (non inclus).

Ø step (facultatif) : Un nombre entier spécifiant l’incrémentation. La valeur par défaut est 1

>>> for i in range(0,10,1):

 print (i)

Exercice
 Ecrivez un programme qui affiche le mot « Informatique » 10 fois

Solution 1 : while

Solution 2 : for

n = 0

while(n < 10):

 print("Informatique")

 n = n + 1

for m in range(0,10,1):

 print("Informatique")

Choisir la structure de boucle adaptée

Nombre d'itérations
est-il connu à l'avance ?

Boucle

BoucleNon

Oui

Les données composites

Les données composites
 Une donnée (variable ou expression) de type composite est une entité qui

rassemble dans une seule structure un ensemble d’entités plus simples.
 Les types de données composites sont constitués d'autres types de données,
 Types Composites : Liste, Tuple, Dictionnaire, Ensemble (Set)

Type simple

Type Simple Type Simple Type
composite

Les listes
 Une liste est une structure de données qui contient une série de valeurs.

 Python autorise la construction de liste contenant des valeurs de types différents.

 Une liste est déclarée par une série de valeurs séparées par des virgules, et le tout encadré par des
crochets.

nom_liste = 10 20 “Alice" 30 “Bob“

Les listes
 Les listes sont des séquences, c'est-à-dire des collections ordonnées d'objets. On

peut accéder à chacun d'entre eux individuellement si l'on connaît son indice (index)
dans la liste.

 La liste peut être indexée avec des nombres négatifs ou postifs selon le modèle
suivant :

Les listes
 Tranches : Un autre avantage des listes est la possibilité de sélectionner une partie d'une liste en

utilisant un indiçage construit sur le modèle [m:n+1] pour récupérer tous les éléments, du m-ième au
n-ième (de l'élément m inclus à l'élément n+1 exclu). On dit alors qu'on récupère une tranche de la
liste.

Les listes
 Tranches : On peut aussi préciser le pas en ajoutant un symbole deux-points

supplémentaire et en indiquant le pas par un entier.

Les listes
 Opération sur les listes : Tout comme les chaînes de caractères, les listes

supportent l'opérateur + de concaténation, ainsi que l'opérateur * pour la
duplication.

Les listes
 Une liste Python peuvent être modifiée.

On dit que les listes sont mutables.
 4 types de mutations :
 Ajout : l'opérateur de concaténation + ou la

méthode append(),
La méthode append() ajoute un seul élément à la fin
d'une liste;

 Modification : par substitution;
 Insertion; La méthode insert() insère un objet

dans une liste à un indice déterminé;
 Suppression. L'instruction del supprime un

élément d'une liste à un indice déterminé

Les listes - Méthodes

Pr.Abdelouafi ikidid ~ abdelouafi.ikidid@gmail.com61

 len(nomListe) : Affiche la taille de la liste
 sum(nomListe) : Calcule la somme des éléments de la liste
 max(nomListe) : Cherche la valeur maximale dans la liste
 min(nomListe) : Cherche la valeur minimale dans la liste
 nomListe.remove(Element) : Retire un élément de la liste
 nomListe.sort() : Trie la liste
 nomListe.pop() : Retire le dernier élément de la liste

Exercices
 Exercice 1 :
Constituez une liste semaine contenant les 7 jours de la semaine.

1. À partir de cette liste, comment récupérez-vous seulement les 5 premiers jours de la
semaine d'une part, et ceux du week-end d'autre part ? Utilisez pour cela l'indiçage.

2. Trouvez deux manières pour accéder au dernier jour de la semaine.

 Exercice 2 : Remplir une liste avec 10 entiers donnés par l’utilisateur .Puis, le
programme trouve le plus grand et le plus petit de ces nombres.

Exercice 2
>>> jours = ['lun','mar','mer','jeu','ven','sam','dim']
>>> jours[0:5] # 5 premiers jours
>>> jours[:5] # 5 premiers jours
>>> jours[5:7] # week-end
>>> jours[-2:] # week-end
>>> jours[6] # dernier jour
>>> jours[-1] # dernier jour
>>> jours

Exercice 2
l=[]
#Remplissage
for i in range(10):
 l.append(int(input("Donner un nombre:")))
#Recherche le pp et pg
#1- initialisation
min=l[0]
max=l[0]
#2 -recherche dans le reste
for elt in l:
 if min>elt:
 min=elt
 if max<elt:
 max=elt
#3 affichage
print("Le plus petit :",min)
print("Le plus grand:",max)
print(l)

Les chaines de caractères
Chaînes de caractères  Données composites

 Une chaîne de caractères est une donnée composite de type string str qui est
une suite d’entités (ou items) plus simples,  les caractères.

 On peut considérer une chaîne de caractères comme une séquence ordonnée
de variables qui contiennent chacune un caractère. Les caractères sont indexés
à partir de 0.

 Si on crée une variable de type str avec l’affectation chaine = ’Hello’ , on
obtient sa longueur avec len(chaine) et on accède au caractère d’indice i par
son nom qui est chaine[i].

 Le type str est un type de variable non mutable, c’est pourquoi on ne peut
modifier le premier caractère avec chaine[0]=’V’ par exemple.

Les chaines de caractères
Exemple
On observe que :
 on peut désigner un caractère

directement par son indice ;
 on peut compter à partir de la fin ;
 on peut extraire des tranches;
 il n'est pas possible de changer une

partie d'une chaîne.

Exercice
1. Écrivez un script qui détermine si une chaîne contient ou non le caractère

«a».
2. Écrivez un script qui compte le nombre d'occurrences du caractère «e» dans

une chaîne.

Les tuples
 Les tuples (« n-uplets » en français) sont des objets séquentiels correspondant aux listes (itérables,

ordonnés et indexables) mais ils sont toutefois non modifiables.

 Les tuples sont un autre type séquentiel de données.

 Un tuple est une donnée immuable à la différence d’une liste qui est altérable. Cela signifie qu’on ne
va pas pouvoir modifier les valeurs d’un tuple après sa création.

 L'intérêt des tuples par rapport aux listes réside dans leur immutabilité

 Pratiquement, on utilise les parenthèses au lieu des crochets pour les créer :

Les tuples
 Les opérateurs + et * fonctionnent comme pour les listes (concaténation et

duplication) :

Les dictionnaires
 Les dictionnaires sont un autre type séquentiel de données.
 Leur différence réside dans leur façon d’indexer les valeurs.
 On a la liberté de choisir nous mêmes nos clefs (ou index ou indice) et attribuer la clef

de notre choix à chaque valeur.
 Les valeurs d’un dictionnaire ne sont pas ordonnées à la différence des valeurs d’une

séquence.
 On accède aux valeurs d'un dictionnaire par des clés

nom taille poids

girafe 5.0 1100

ani1 = {}

ani1["nom"] = "girafe"

ani1["taille"] = 5.0

ani1["poids"] = 1100

print(ani1)

Les dictionnaires : Itération sur les clés
 Si on souhaite voir toutes les associations clés / valeurs, on peut itérer sur un

dictionnaire de la manière suivante :

Les dictionnaires

Les ensembles (Sets)
 Les ensembles sont un autre type de données composites.
 Un ensemble est une collection d’éléments modifiables, non ordonnée, sans

index et qui ne peut pas posséder l’élément dupliqué.

Les ensembles (Sets)
 La fonction interne à Python set() convertit un objet itérable passé en

argument en un nouveau set (opération de casting)

Les ensembles (Sets)
 Nous avons dit plus haut que les sets ne sont pas ordonnés ni indexables, il est

donc impossible de récupérer un élément par sa position. Il est également
impossible de modifier un de ses éléments par l'indexation

 Par contre, les sets sont itérables :

Les ensembles (Sets)
 Les sets ne peuvent être modifiés que par des méthodes spécifiques.

 les sets ne supportent pas les opérateurs + et *

Les fonctions

Qu’est ce qu’une fonction

F(x) = 2x

x 2x

3 6

print("Bonjour") Bonjour

Fonctions : Principe et généralités
 Les fonctions permettent de décomposer un programme complexe en une série de

sous-programmes plus simples, lesquels peuvent à leur tour être décomposés eux-
mêmes en fragments plus petits, et ainsi de suite…
 Par exemple si nous disposons d'une fonction capable de calculer une racine carrée, nous pouvons

l'utiliser un peu partout dans nos programmes sans avoir à la réécrire à chaque fois.

 Vous connaissez déjà certaines fonctions Python. Par exemple range() ou len(). Pour
l'instant, une fonction est à vos yeux une sorte de « boîte noire » :
 À laquelle vous passez aucune, une ou plusieurs variable(s) entre parenthèses. Ces variables sont

appelées arguments.
 Qui effectue une action.
 Et qui renvoie un objet Python ou rien du tout

Fonctions : Déclaration d’une fonction
 Pour définir une fonction, Python utilise le mot-clé def. Si on souhaite que la

fonction renvoie quelque chose, il faut utiliser le mot-clé return.

 l'indentation de ce bloc d'instructions (qu'on appelle le corps de la fonction) est
obligatoire.

 valeur_de_retour = récupérable dans une variable
 Exemple :

def nomFonction(parametre1,parametre2,…) :
 instructions
 return valeur_de_retour

>>> def carre(x):
... return x**2
...
>>> print(carre(2))
4

Fonctions : Déclaration d’une fonction

def myFunction() :
instruction1
instruction2
…

> myFunction()

def myFunction(p1, p2, …) :
instruction1
instruction2
…

> myFunction(valeur1, valeur2, …)

def myFunction() :
instruction1
instruction2
…
return valeur

> var = myFunction()

def myFunction(p1, p2, …) :
instruction1
instruction2
…
return valeur

> retour = myFunction(valeur1, valeur2, …)

Fonction sans paramètres sans retour Fonction sans paramètres avec retour

Fonction avec paramètres sans retour Fonction avec paramètres avec retour

Fonctions : Déclaration d’une fonction

>>> def hello():
... print("bonjour")
...
>>> hello()
bonjour

>>> def bonjour(p) :
... print("bonjour ", p)
...
>>> bonjour("mohamed")
bonjour mohamed

def filiere() :
... return "SIR"
...
>>> filiere()
‘SIR’

>>> def fois(x, y):
... return x*y
...
>>> fois(2, 3)
6
>>> prod = fois(2, 3)
>>> prod
6

Fonction sans paramètres sans retour Fonction sans paramètres avec retour

Fonction avec paramètres sans retour Fonction avec paramètres avec retour

Fonctions : Fonctions prédéfinies

On peut découvrir toutes les fonctions built-in ici.

https://docs.python.org/3/library/functions.html

Exemples

Fonction Description Exemple
print() Affiche une valeur print("Bonjour")

len() Donne la taille d’une chaîne ou d’une liste len("Python") → 6

type() Donne le type d’une variable type(3.14) → <class 'float'>

sum() Fait la somme d'une liste de nombres sum([1,2,3]) → 6

max() Donne la plus grande valeur d'une séquence max([10, 20, 5]) → 20

min() Donne la plus petite valeur min([10, 20, 5]) → 5

round() Arrondit un nombre round(3.14159, 2) → 3.14

sorted() Trie une liste sorted([5, 2, 9]) → [2, 5, 9]

Exercices
 Exercice 1 :

1. Proposer une fonction en python qui permet de calculer la somme des éléments d’une liste

2. Utiliser cette fonction pour calculer la somme des éléments d’une liste L dont les éléments sont
générés aléatoirement.

 Exercice 2 :

1. Proposer une fonction qui construit une liste les diviseurs d’un nombre la fonction doit retourner la
liste construite.

2. tester la fonction avec un programme de test.

 Exercice 3 : Utilisation des fonctions récursives

 Une fonction récursive est une fonction qui s’appelle elle-même, toutefois, il faut faire attention à la
condition d’arrêt sinon on risque d’exécuter la fonction à l’infinie

1. Proposer une fonction qui calcule la factorielle d’un nombre

2. Utiliser la fonction pour calculer la somme des factorielles des 100 premiers nombres positifs

Les modules standard et paquets Python

Définition d’un module
 Module Python : On appelle “module” tout fichier constitué de code Python

(c’est-à-dire tout fichier avec l’extension .py) importé dans un autre fichier ou
script.

 On les appelle aussi bibliothèques ou libraries.
 Il y a trois types de modules Python :
 Les modules standards qui ne font pas partie du langage en soi mais sont intégrés

automatiquement par Python ;
 Les modules développés par des développeurs externes qu’on va pouvoir utiliser ;
 Les modules qu’on va développer nous mêmes.

 Pour utiliser un module, on utilise la commande import.

Définition d’un module
 Un module est un fichier Python (.py) contenant un ensemble de fonctions, de classes et de variables prédéfinies et

fonctionnelles, que vous pouvez utiliser comme bon vous semble dans votre code !

 Par exemple, si vous travaillez sur une problématique faisant intervenir de la géométrie, vous pourriez avoir besoin de :
 classes :

 carré – défini par la longueur de son côté,

 triangle – défini par la longueur de ses trois côtés,

 cercle – défini par son rayon,

 etc. ;

 variables :
 pi : constante indispensable pour calculer l’aire d’un cercle, égale à 3,1415...,

 phi : constante représentant le nombre d’or, égale à 1,6180... ;

 fonctions :
 aire : qui prend en paramètre un objet géométrique (carré, triangle, etc.) et calcule son aire,

 angles : qui prend en paramètre un triangle, et calcule les angles internes de ce dernier ,

 etc.

Importation de modules
 Exemple :

 Ligne 1, l'instruction import donne accès à toutes les fonctions du module
random.

 Ensuite, ligne 2, nous utilisons la fonction randint(0, 10) du module
random. Cette fonction renvoie un nombre entier tiré aléatoirement entre 0
inclus et 10 inclus.

>>> import random # 1
>>> random.randint(0, 10) # 2
4 # 3

Quelques modules courants
• math : fonctions et constantes mathématiques de base (sin, cos, exp,

pi...).
• sys : interaction avec l'interpréteur Python, passage d'arguments.
• os : dialogue avec le système d'exploitation.
• random : génération de nombres aléatoires.
• time : accès à l'heure de l'ordinateur et aux fonctions gérant le temps.
• …
• Pour la liste complète, reportez-vous à la page des modules sur le site

de Python.

https://docs.python.org/fr/3/library/math.html#module-math
https://docs.python.org/fr/3/library/sys.html#module-sys
https://docs.python.org/fr/3/library/os.html#module-os
https://docs.python.org/fr/3/library/random.html#module-random
https://docs.python.org/fr/3/library/time.html#module-time
https://docs.python.org/fr/3/py-modindex.html

Exemples
Module Fonction ou

constante Description Exemple

sqrt(x) Racine carrée de x math.sqrt(16) → 4.0

pow(x, y) Puissance x^y math.pow(2, 3) → 8.0

pi Constante π math.pi → 3.1415...

log(x) Logarithme népérien (base e) math.log(10) → 2.302...

date.today() Donne la date du jour datetime.date.today()

now() Donne la date et l’heure actuelles datetime.datetime.now()

randint(a, b) Nombre entier aléatoire entre a et b inclus random.randint(1, 10)

choice(liste) Choisit un élément au hasard dans une liste random.choice(['A', 'B'])

random() Nombre réel aléatoire entre 0 et 1 random.random() → 0.54...

uniform(a, b) Nombre réel aléatoire entre a et b random.uniform(5, 10) →
7.63...

Les librairies Python pour l'analyse de données
Dans le domaine de l'analyse de données en particulier, voici une liste de
librairies incontourables que nous allons voir dans le cadre de ce cours:

: librairie de calcul scientifique (algèbre, calcul matriciel, stochastique, etc.)
: librairie permettant la représentation, la manipulation et l'analyse de données

sous forme de tableaux (ou DataFrames)
: librairie de visualisation graphique de données.

 : librairie de visualisation statistique avancée reposant sur matplotlib, offrant
des graphiques élégants, lisibles et optimisés pour l’analyse des relations entre les
variables (nuages de points, cartes de chaleur, distributions, etc.)

Les librairies Python pour l'analyse de données
Pour importer un package, il faut tout d'abord qu'il soit installé sur la machine (ce qui est déjà fait). Ensuite, il faut utiliser les
mots-clés suivants:

import package as alias ou from package import subpackage as alias
Exemple :

 Syntaxe 1 : Importer tout le package avec un alias
import numpy as np

Cela vous permet d’utiliser toutes les fonctionnalités de numpy en écrivant simplement np.

Par exemple :
import numpy as np
resultat = np.sqrt(16) # Utilise la fonction racine carrée de numpy
print(resultat) # Affiche : 4.0

Syntaxe 2 : Importer uniquement une partie spécifique du package
from numpy import sqrt

Cela vous permet d’utiliser directement la fonction sans utiliser l’alias :
from numpy import sqrt
resultat = sqrt(16) # Pas besoin de préciser numpy
print(resultat) # Affiche : 4.0

Numpy

Qu'est-ce que NumPy ?
 Le terme NumPy est en fait l’abréviation de « Numerical Python ». Il s’agit d’une bibliothèque

Open Source en langage Python.

 NumPy (Numerical Python) est une bibliothèque Python spécialisée dans :
 Le calcul scientifique.

 La manipulation efficace de tableaux de données (appelés ndarray).

 Les opérations mathématiques vectorisées.

 Le calcul matriciel, les fonctions statistiques et les algèbres linéaires.

 Pourquoi NumPy en Analyse de Données ?
 NumPy est la base de nombreuses bibliothèques comme Pandas, SciPy, Scikit-learn.

 Il permet de traiter rapidement de grandes quantités de données numériques.

 Il optimise les performances grâce à des opérations vectorisées (plus rapides que les boucles Python
classiques).

 On utilise cet outil pour la programmation scientifique en Python, et notamment pour la
programmation en Data Science, pour l’ingénierie, les mathématiques ou la science.

http://www.numpy.org

http://www.numpy.org/

Utilisation
 Il faut au départ importer le package numpy avec l’instruction suivante :

import numpy as np

 Exemple

Tableaux - numpy.array()
Un tableau NumPy (appelé ndarray : n-dimensional array) est une structure de données
qui permet de stocker et manipuler des séries de valeurs numériques sous forme de
vecteurs (1D), matrices (2D), ou tableaux multidimensionnels (3D et plus).
C'est l'équivalent optimisé d'une liste Python, conçu pour les calculs scientifiques rapides.
 Création d’un tableau avec numpy.array()

numpy.array(liste_de_valeurs)
 Exemple1 :

import numpy as np
tableau = np.array([10, 20, 30, 40])
print(tableau)

Résultat :
[10 20 30 40]

 Exemple2

Tableau 2D
 Il est possible de créer un tableau 2D en utilisant une liste de listes au moyen

de crochets imbriqués. Les listes internes correspondent à des lignes du
tableau.

 Exemple

Propriétés utiles d’un tableau NumPy

import numpy as np

price_list = [100000, 300000, 250000]

price_array = np.array(price_list)

print(price_array)

print("shape:", price_array.shape)

print("mean:", price_array.mean())

print("argmax:", price_array.argmax())

print("cumsum:", price_array.cumsum())

: donne la forme du tableau.
 Résultat : (3,) ce qui signifie un tableau à une dimension
contenant 3 éléments.

: calcule la moyenne des valeurs.
 Résultat : (100000 + 300000 + 250000) / 3 = 216666.666...

 : donne l'indice de la plus grande valeur.
 Résultat : 1, car 300000 est à la position 1 (en
commençant à 0).

) : retourne la somme cumulée des éléments.
 Résultat : [100000 400000 650000]

•100000
•100000 + 300000 = 400000
•400000 + 250000 = 650000

Fonctions mathématiques avec NumPy

Fonctions mathématiques avec NumPy

Pandas

Qu'est-ce que Pandas ?
 Pandas est une librairie python qui permet de manipuler et analyser

facilement des données.
 manipuler des tableaux de données avec des étiquettes de variables (colonnes)

et d'individus (lignes).
 Ces tableaux sont appelés DataFrames.
 On peut facilement lire et écrire ces Dataframes à partir ou vers un fichier

tabulé.
 On peut facilement tracer des graphes à partir de ces DataFrames grâce à

matplotlib.

https://pandas.pydata.org/

Pourquoi utiliser Panda Python ?
 Fournit une structure de donnée appelée Dataframe rapide et efficace pour la

manipulation des données avec indexation intégrée ;
 Dispose d’outils pour lire et écrire dans des fichiers de différents formats

(.Csv, .Txt, .Xlsx, .Sql, .Hdf5, etc…) ;
 Offre une flexibilité pour traiter les données de type hétérogènes ou

manquantes ;
 Est open source ;
 Fournit une documentation très détaillée et facile à lire ;
 Est utilisée dans une grande variété de domaines universitaires et

commerciaux, notamment la finance, les neurosciences, l’économie, les
statistiques, la publicité, l’analyse web…

Utilisation
 Il faut au départ importer le package pandas avec l’instruction suivante :

import pandas as pd

DataSet

 https://www.mockaroo.com/

https://www.mockaroo.com/

import pandas as pd

data = pd.read_excel("NOTES_DATA.xlsx", sheet_name="f1")

print(data)

Lecture de données
 le nom des colonnes est dans le fichier xlsx et l’index des lignes est numérique

(de 0 a n-1)

Chargement des données depuis un fichier xlsx

nom du fichier Excel
importe la bibliothèque pandas

 la feuille Excel (l’onglet)

Affichage des informations
 data.info() : imprime des infos sur le Dataframe

Sélection
 data.head(), data.tail() : les 5 premières ou les 5 dernières.

Sélection
 Sélection colonne

Sélection ligne

Sélection de ligne dans la colonne

Sélection de plusieurs colonnes

 data.columns : les noms des colonnes

 data.index :les noms des lignes

 data.shape : renvoie la dimension du dataframe sous forme (nombre de
lignes, nombre de colonnes)

Calcul sur les données

Suppression d’une colonne

Dataframes et indexation
 Quand on boucle sur un

dataframe, on boucle sur les
noms des colonnes :

 On peut boucler sur les lignes
d'un dataframe, chaque ligne se
comportant comme un
namedtuple :

Accès selon une condition :

Mesures Statistiques
§ min_value = data["nom_de_la_colonne"].min()
§ max_value = data["nom_de_la_colonne"].max()
§ sum_value = data["nom_de_la_colonne"].sum()
§ prod_value = data["nom_de_la_colonne"].prod()
§ count_value = data["nom_de_la_colonne"].count()

Fonctions sur les dataframes
 data["Col"].mean() : renvoie la moyenne de la colonne Col (en ignorant

les NaN)
fonctions similaires à mean :
 min, max
 sum, prod : la somme, le produit.
 Mesures de Tendance Centrale
 1 – le mode
 2 – la médiane
 3 – la moyenne

mode_value = data["nom_de_la_colonne"].mode()

mediane_value = data["nom_de_la_colonne"].median()

mediane_rendement = data["Rendement"]. mean()

L’opération de groupage
 La fonction groupby() est l’une des fonctions les plus utiles lorsqu’il s’agit de

traiter des dataframes volumineux dans Pandas.
 Une opération groupby consiste généralement à diviser la dataframe, à

appliquer une fonction et à combiner les résultats.

moyenne_ef_par_genre = data.groupby('genre')['Note_EF'].mean()

print(moyenne_ef_par_genre)

Matplotlib et Techniques d’exploration des
données

Analyse exploratoire des données (AED)
 Qu'est-ce que l'Analyse exploratoire des données ?
 L’analyse exploratoire des données (AED) est une approche initiale de

l’analyse des données qui vise à résumer leurs principales caractéristiques,
souvent à l’aide de méthodes visuelles et statistiques. Elle permet de :
 Comprendre la structure des données disponibles.
 Détecter les valeurs manquantes, aberrantes ou extrêmes.
 Identifier les tendances, motifs et relations entre les variables.

 L'AED constitue une étape cruciale avant l'application de modèles
d'apprentissage automatique ou prédictif, car elle permet de poser les bonnes
hypothèses et de mieux préparer les données.

Analyse exploratoire des données (AED)

La visualisation des données est essentielle pour :
 Identifier des tendances globales.
 Détecter des valeurs aberrantes.
 Communiquer efficacement les résultats.

Types de visualisations utiles :
1. Histogrammes :

 Utilisés pour visualiser la distribution des variables numériques.
 Exemple : Analyser la fréquence des rendements mensuels d'un portefeuille financier.

2. Diagrammes de dispersion :
 Montrent la relation entre deux variables numériques.
 Exemple : Étudier la relation entre les taux d’intérêt et les rendements obligataires.

3. Boxplots (Boîtes à moustaches) :
 Illustrent la dispersion et les valeurs aberrantes d’une variable.
 Exemple : Comparer les rendements mensuels de différents fonds d’investissement.

4. Séries temporelles :
 Visualisent les évolutions de variables au cours du temps.
 Exemple : Suivre l’évolution des prix d’une action.

Analyse exploratoire des données (AED)

Visualisation des données en Python
 Pour tracer des courbes nous avons besoin de la bibliothèque Matplotlib utilisée dans

ce cours.
 Si vous ne disposez pas de cette bibliothèque, vous pouvez cette commande pour

installer l’environnement adapté.

py -m pip install matplotlib

Analyse exploratoire des données (AED)

 Matplotlib est une bibliothèque python qui dessine des graphiques. Nul besoin
de connaissances en interfaces graphiques pour créer un graphique
dynamique avec possibilité de zoom et de sauvegarde par l'utilisateur. Il est
d'ailleurs possible de sauvegarder les graphiques en format matriciels comme
le PNG, JPEG , etc. et vectoriels comme le PDF et le SVG .

Création d’une courbe
 Importation de module : import matplotlib.pyplot as plt
 Chaque représentation graphique a une fonction correspondante avec

Matplotlib :
 nuage de points ou scatter plot, en anglais : scatter() ;
 diagrammes en ligne ou en courbes : plot() ;
 diagrammes en barres : bar() ;
 histogrammes : hist() ;
 diagrammes circulaires : pie()

diagrammes en ligne ou en courbes : plot()
 L’instruction plot() permet de tracer des courbes qui relient des points

dont les abscisses et ordonnées sont fournies en arguments.
 Exemple

import matplotlib.pyplot as plt

x = [1,3,4,6]

y = [2,3,4,1]

plt.plot(x, y)

plt.show() # affiche la figure à l'écran

Création d’une courbe
 Exemple 2

y = 2x²+3x-4 entre -2 et 2 en utilisant 100 points

Les fonctions de base
 plt.show() : Pour afficher le résultat.
 plt.plot(liste_x,liste_y) : placera les points de coordonnées

(x_1,y_1), (x_2,y_2), ..., (x_n, y_n)
 Exemple :

 plt.axis(x_min, x_max, y_min, y_max) : Cette fonction permet de modifier les
axes du repère qui sera affiché

 plt.grid() : Affiche un quadrillage en plus sur notre repère.

Tracé de fonctions plus complexes
 Tracé de y = cos(x) + 3 sin(2x)

Tracé de plusieurs fonctions

 y = -2x + 3
 y = x² - 4x + 4

Tracé de diagrammes en bâtons et histogrammes
 Pour les diagrammes en bâtons, on utilise la fonction bar(valeurs,effectifs).

 Exemple

import matplotlib.pyplot as plt

x = [3, 5, 6, 7]

y = [4, 1, 3, 4]

plt.bar(x,y)

plt.show()

Tracé de diagrammes en bâtons et histogrammes
 Comparer les performances moyennes aux différentes évaluations (Note_TP)

selon le genre. Utile pour détecter d’éventuelles disparités ou biais de
performance selon le genre.
import matplotlib.pyplot as plt
Calcul des moyennes par genre
mean_notes = data.groupby('genre')['Note_TP'].mean()
Exemple avec la moyenne de Note_CC uniquement
x = mean_notes.index
y = mean_notes
plt.bar(x, y)
plt.title("Moyenne de Note_CC par genre")
plt.xlabel("Genre")
plt.ylabel("Note_CC Moyenne")
plt.grid(True)
plt.show()

Tracé de diagrammes en bâtons et histogrammes
 Histogram : Distribution des âges
 Visualiser la répartition des étudiants selon leur âge. Cela permet de connaître

les classes d’âge dominantes et d’ajuster les méthodes pédagogiques selon les
tranches d’âge.

import matplotlib.pyplot as plt

plt.hist(data['age'], bins=4, edgecolor='black')

plt.title('Distribution des âges')

plt.xlabel('Âge')

plt.ylabel('Nombre d\'étudiants')

plt.grid(True)

plt.show()

Affichages de nuages de points
 plt.scatter(abscisses, ordonnées)
 Exemple

import matplotlib.pyplot as plt

import numpy as np

x = [1, 3, 2, 1]

y = [2, 3, 1, 3]

plt.scatter(x,y)

plt.show()

Affichages de nuages de points
 Objectif d’analyse :
 Observer s’il existe une corrélation entre les notes de l’examen final (EF) et la

moyenne genrele (Moyenne). Cela permet de savoir si les étudiants qui
réussissent en EF ont aussi tendance à bien performer en Moyenne.

import matplotlib.pyplot as plt

data["Moyenne"] = data["Note_CC"] * 0.25 + data["Note_TP"] * 0.25 + data["Note_EF"] * 0.50

plt.scatter(data['Note_EF'], data['Moyenne'])

plt.title('Note_EF vs Moyenne')

plt.xlabel('Note_EF')

plt.ylabel('Moyenne')

plt.grid(True)

plt.show()

pie
 Un graphique en secteurs (pie chart) est utilisé pour représenter des

proportions ou des parts d’un tout. Chaque part (secteur) correspond à un
pourcentage de la somme totale.

import matplotlib.pyplot as plt
Données
lab = ['Produit A', 'Produit B', 'Produit C']
valeurs = [40, 35, 25]
Graphique
plt.pie(valeurs, labels=lab)
plt.title("Répartition des ventes")
plt.show()

pie
 Objectif d’analyse :
 Mesurer la proportion de chaque genre dans l’échantillon d’étudiants. Cette

information est importante pour comprendre la composition démographique
de la classe ou du groupe d’étude.

import matplotlib.pyplot as plt

genre_counts = data['genre'].value_counts()

plt.pie(genre_counts, labels=genre_counts.index, autopct='%1.1f%%', startangle=140)

plt.title('Répartition des genres')

plt.show()

Seaborn

Générez des graphiques complexes

Seaborn
 La librairie Seaborn vient proposer une alternative à Matplotlib. C’est

également une librairie permettant de générer des graphiques, tout comme
Matplotlib

 il propose de multiples modèles graphiques prédéfinis de bonne qualité
esthétique, en modifiant les options graphiques par défaut de Matplotlib ;

 il ajoute une interaction avec les data frames afin de faciliter grandement la
génération de graphiques à partir de ceux-ci ;

 il propose un catalogue – très – dense de fonctions graphiques pour répondre
le plus précisément possible à une problématique donnée

 Seaborn étant une surcouche de Matplotlib, il y a donc de nombreuses
ressemblances entre les deux librairies

Utilisation
 Installation de Seaborn

python -m pip install seaborn
 Importation des bibliothèques

import seaborn as sns
import matplotlib.pyplot as plt

 Chargement des données
tips_data = sns.load_dataset('tips')

Exemples de visualisations avec Seaborn
 Diagramme en barres - Distribution des pourboires par jour

Exemples de visualisations avec Seaborn
 Nuage de points - Relation entre la facture et le pourboire

Exemples de visualisations avec Seaborn
 Histogramme - Distribution des factures

Exemples de visualisations avec Seaborn
 Diagramme en violon - Distribution des pourboires par sexe

Machine Leraning et L'analyse prédictive

Machine Learning (Apprentissage automatique) : Définition
 Qu'est-ce que c'est l'apprentissage (Learning) ?

 Dans le contexte de l'intelligence artificielle (IA), l'apprentissage désigne le processus par lequel un
système ou un modèle informatique améliore ses performances sur une tâche donnée à partir de
données ou d'expériences, sans être explicitement programmé pour chaque situation.

 Cela correspond à ce que l'on appelle généralement l'apprentissage automatique (ou machine
learning).

Le Machine Learning est une sous-discipline de l'IA

Machine Learning (Apprentissage automatique) : Définition
 Le Machine Learning a une tâche précise à accomplir : prédire.

 Processus :
 Collecte de données.
 Création d’un modèle basé sur ces données.
 Évaluation et amélioration du modèle.

APPRENTISSAGE automatique : Modèle
 L’apprentissage automatique (ML) nous permet de construire des systèmes

informatiques qui apprennent tout seuls à partir des données qu’ils utilisent.
Encore mieux : ils sont capables d’améliorer leur performance au cours du
temps, en s’enrichissant de nouvelles données.

 Une fois que le problème est défini, le programme d’apprentissage
automatique va avoir besoin d’un modèle sur lequel s’appuyer.

Un modèle est une représentation mathématique d’un problème donné.

Fonctionnement du machine learning
 L’idée centrale du machine learning est d’apprendre à partir de données.
 Le Machine Learning utilise des algorithmes pour développer des modèles

prédictifs à partir de jeux de données (datasets, en anglais)
 Le machine learning repose sur deux piliers fondamentaux :
 — Les données, qui sont les exemples à partir duquel l’algorithme va apprendre ;
 — L’algorithme d’apprentissage, qui est la procédure que l’on fait tourner sur ces

données pour produire un modèle. On appelle entraînement le fait de faire tourner un
algorithme d’apprentissage sur un jeu de données.

Données
d’apprentissage

algorithme
d’apprentissage

Modéle
apprendre produire

APPRENTISSAGE automatique : Modèle
Exemple : un problème que pourrait rencontrer un agent immobilier : faire
estimer un bien au prix de vente le plus conforme au marché immobilier. Pour
réaliser cette évaluation, notre professionnel de l’immobilier va effectuer deux
étapes :

1. il recueille des données sur les caractéristiques clés du bien immobilier
(par exemple : l’emplacement géographique, la superficie, l’état général,
etc.) ;

2. il procède ensuite à une évaluation fondée sur des données publiques
disponibles, ainsi que sur sa propre expertise immobilière.

Au fil du temps, il va pouvoir développer sa connaissance du marché qu’il cible.
Ainsi, l’agent, fort de toutes ses connaissances immobilières et des données
disponibles, va devenir de plus en plus apte à fournir une évaluation de bien.
On pourrait dire qu’il a développé un modèle d’évaluation des prix.

Fonctionnement du machine learning
 Le machine learning consiste à entraîner un algorithme au sein d’une base d’apprentissage. On lui fait

reconnaître des motifs récurrents ou « patterns » pour aboutir à un modèle réalisant des prédictions.

 Une fois ce modèle développé, celui-ci est sollicité par la machine lors de traitements de nouvelles données, pour
aboutir à une réponse ou à une action finale. Au fur et à mesure des entraînements successifs et grâce à
l’évolution du contexte, l’algorithme améliore ses performances.

 Tout ce processus à lieu automatiquement et vous n’aurez qu’à renseigner les données initiales pour
l’apprentissage ! Plus on le nourrit et plus il devient précis.

Machine Learning (Apprentissage automatique)
1.Données comme exemples

d'apprentissage
2. Apprentissage à partir des données

3. Évaluation des réponses

Si un fruit est rouge et rond, c'est
peut-être une pomme

nouvelle image qu'elle n'a jamais vue

4. Amélioration continue

Introduction à la Modélisation Prédictive
 La modélisation prédictive, ou Predictive Modeling en anglais, regroupe un ensemble de méthodes permettant de

collecter et d’analyser des données définies, de manière à les interpréter pour en déduire des pronostics
concernant des tendances futures, des événements à venir ou bien le comportement des consommateurs à l’avenir.

 La modélisation prédictive consiste à utiliser des données historiques pour anticiper des comportements ou des
résultats futurs. Cette approche s’appuie sur des outils mathématiques et des algorithmes pour fournir des
insights exploitables.

Imaginons que vous soyez responsable des données d'une plateforme de contenu en ligne dont le business model
repose sur le nombre d'abonnements souscrits. On vous pose 2 questions :

 Quel est le profil des utilisateurs qui s'abonnent ? → La modélisation statistique.

 Comment prédire si un nouvel utilisateur va s'abonner ?→ La modélisation prédictive (machine learning)

 Marché : Prévision de la demande et des prix de vente

 Comptabilité : Prévision des flux de trésorerie

 Économie : Prévision du taux de chômage ou de croissance

 Tout modèle prédictif repose sur un jeu de données. Sans données, pas de Machine
Learning.

 Comme le suggère la définition proposée par Wikipedia, les algorithmes de
l’apprentissage automatique sont basés sur des données. On parle aussi
d’échantillons (samples), d’observations, ou d’exemples. → données (dataset).

 Deux grandes familles de jeux de données peuvent être utilisées :
— les données étiquetées : chaque observation xn est fournie avec
une étiquette (label) yn que l’on cherche à prédire ;

— les données non-étiquetées : comme le nom l’indique,
aucune étiquette n’est fournie.

Dataset Données = carburant du ML

Dataset
 Dans l’apprentissage supervise le dataSet contient

toujours deux types de variables :
 La variable cible, sujet de la prédiction (y : Target).
 Les autres variables potentiellement prédictrices (x : Features).

 Par exemple, prenons un jeu de données comprenant
l'âge, la taille et le poids d'une centaine de collégiens. Si
on souhaite prédire le poids des enfants en fonction de
leur taille et de leur âge, la variable cible sera le poids et
les variables prédictrices seront l'âge et la taille.

La variable cible
(target)

les variables prédictrices
(features)

Technique de la Modélisation Prédictive

 Modèle qui prédit une valeur numérique continue à partir de variables explicatives, en
supposant une relation linéaire entre elles.

 Exemple : prédire le prix d’une maison en fonction de sa surface.

 Algorithme de classification ou régression qui prédit la sortie d’un point en se basant
sur les k points les plus proches dans les données d’entraînement.

 Exemple : prédire si un client achètera (Oui/Non) selon les comportements de ses k
voisins les plus proches.

Technique de la Modélisation Prédictive - Régression
linéaire
 La régression linéaire est une méthode statistique utilisée pour modéliser la

relation entre une variable dépendante (y) et une ou plusieurs variables
indépendantes (x).

 L’objectif est de trouver une relation linéaire qui permet de prédire les
valeurs futures de � à partir de � .

 Selon qu'il y a une ou plusieurs variables indépendantes, on distingue l'analyse
de régression linéaire simple et l'analyse de régression linéaire multiple.

Technique de la Modélisation Prédictive - Régression
linéaire

 Une seule variable indépendante est utilisée pour prédire y.
 Exemple : Prédire le prix d’une action en fonction du temps.
 Formule

Technique de la Modélisation Prédictive - Régression
linéaire

 L'objectif d'une régression linéaire simple est de prédire la valeur d'une variable dépendante en
fonction d'une variable indépendante.

 Plus la relation linéaire entre la variable indépendante et la variable dépendante est grande, plus la
prédiction est précise.

 Visuellement, la relation entre les variables peut être représentée par un diagramme de dispersion.
Plus la relation linéaire entre les variables dépendantes et indépendantes est importante, plus les
points de données se situent sur une ligne droite

Technique de la Modélisation Prédictive - Régression
linéaire

 Plusieurs variables indépendantes sont utilisées pour prédire y.
 Exemple : Prédire le rendement d’un portefeuille basé sur plusieurs facteurs

économiques (taux d’intérêt, inflation, volatilité).
 Formule :

Technique de la Modélisation Prédictive - Régression
linéaire

 Contrairement à la régression linéaire simple, la régression linéaire multiple permet
de prendre en compte plus de deux variables indépendantes.

 La variable à estimer est appelée variable dépendante (critère). Les variables utilisées
pour la prédiction sont appelées variables indépendantes (prédicteurs).

 La régression linéaire multiple est fréquemment utilisée dans la recherche sociale
empirique ainsi que dans les études de marché. Dans ces deux domaines, il est
intéressant de déterminer l'influence de différents facteurs sur une variable. Par
exemple, quels sont les déterminants qui influencent la santé ou le comportement
d'achat d'une personne ?

Régression : Exemple illustratif
 Imaginez que vous souhaitiez prédire le prix d’une maison en fonction de sa

surface habitable.
 Pour ce faire, on montre des exemples de maisons à notre machine.

Voici une maison, sa surface habitable est de 100 m2 et son
prix est de 252 000 euros.

Régression : Exemple illustratif
 Dans l’apprentissage supervisé, ces exemples de questions/réponses sont

présentés à la machine sous forme de jeu de données (X, Y), où X représente
les variables d’entrée, et Y la sortie attendue.

Régression : Exemple illustratif
 Grâce à ce jeu de données, la Machine est capable d’apprendre un modèle

permettant de prédire la valeur de Y en fonction de X. Pour ce faire, elle
effectue une auto-évaluation en recherchant le modèle qui lui offre les
meilleures performances par rapport au jeu de données fourni.

Régression : Exemple illustratif
 Une fois ce modèle développé, il est possible de s’en servir pour faire de

futures prédictions.
 Par exemple, si nous avons une nouvelle maison, dont la surface habitable est

de 105 m2 :

Alors notre machine peut utiliser notre modèle pour prédire le prix de cette nouvelle
maison.

Régression
 — 1. Prévision du cours d'une action
 — 2. Évaluation du risque de crédit
 — 3. Modélisation de la relation risque-rendement (CAPM)
 — 4. Prévision des taux d'intérêt
 — 5. Prévision des ventes
 — 6. Prévision du bénéfice net
 — 7. Estimation des amortissements futurs
 — 8. Prévision du budget de fonctionnement
 — 9. Détection d’anomalies comptables


LAB
 Apprendre à utiliser la régression linéaire multiple pour prédire le nombre de

ventes en fonction des dépenses publicitaires sur différents canaux (TV, radio,
journaux).

FIN

