ADF~-

digital lifelong learning

Module : Analyse de données avec Python

Objectifs

Présentation générale du cours

» Le nom du cours
» Analyse de données avec Python :

» Volume horaire
» 08 heures
» Cours + TP

» Contenu

» Chapitre 1 : Introduction au Python = un cours DE python

» Chapitre 2 : Python pour 'analyse de données = un cours EN python

» Objectifs
» Syntaxe de base et structures de données en Python.
» Exploration et traitement de données avec Python.

Plan

Chapitre 1 : introduction au Python
Présentation de Python
Les variables et les types de valeurs
Les structures de controle
Les données composites
Les fonctions
Les modules standard et paquets Python
Chapitre 2 : Python pour I'analyse de données
Exploration de données avec Pandas et NumPy
Visualisation avancée des données avec Matplotlib et Seaborn

Machine Leraning et L'analyse prédictive

@ python’

Chapitre 1 : introduction au Python

Syntaxe de base et structures de données en Python.

Présentation de Python

Historique et Définition

Le langage de programmation Python a été créé en 1989 par Guido van
Rossum

La premiere version publique du langage est sortie en 1991.
La derniere version de Python est la version 3

Python est :

» Multiplateforme.

» Gratuit.

» Un langage de “tres haut niveau”
» Un langage interprété.

» Un langage orienté objet

» Modulable et extensible.

Utilisation de python

Développement Web

Science des Données et Analyse de Données
Bibliotheques : Pandas, NumPy, Matplotlib, Seaborn, Plotly.
Analyse de données, visualisation, manipulation et nettoyage de grands ensembles de données.

Intelligence Artificielle et Machine Learning
Développement d’Applications Desktop
Développement d’Applications Scientifiques
Sécurité et Cybersécurité

Développement de Jeux Vidéo

Traitement des Données et Fichiers

IoT et Robotique

Big Data et Cloud Computing

Traitement d’Images et Vidéos

Création d'APIs et Microservices

Comment utiliser pyhon ?

Comment utiliser pyhon ?

1. Google Colab (Google Labs) :

Accessible en ligne, aucun logiciel a installer
Aller sur : https://colab.research.google.com

Cliquer sur "Nouveau Notebook" ou ouvrir depuis Google Drive

2. Jupyter Notebook :
Utilisé localement ou sur serveur, tres flexible . ®
p—
Télécharger Anaconda : https://www.anaconda.com/products/distribution jupyter
Installer Anaconda (Python inclus) ®

Ouvrir Anaconda Navigator, puis lancer Jupyter Notebook

Syntaxe de base - Commentaires

» Pour ajouter un commentaire dans un code Python, on utilise le signe #.

1 # Votre premier commentaire en Python.

2 print("Hello world!")

-

s

4 # D autres commandes plus utiles pourraient suivre.

Syntaxe de base - Notion de bloc d'instructions et
d'indentation

En Python, I'indentation est utilisée pour définir des blocs de code, c’est-a-
dire pour indiquer a I'interpréteur quelle instruction appartient a quelle
autre. 21'ensemble des lignes indentées constitue un bloc d'instructions.

= 20
(a > 100):

D r‘]- I‘1t (11 3 .__‘ '_ E _: - - .. ~er . ::- -.: Y i BlOC
. = o ' PR d’instruction
Indentation pri nt (a est

print(“"a ne

I Les variables et les types de valeurs Python

Variables et opérateur d’affectation

Une variable est une zone de la mémoire de 'ordinateur dans laquelle une
valeur est stockée.

Ville Code_Postal Nom Prenom Age

Aux yeux du programmeur, une variable est définie par un nom, alors que
)

pour 'ordinateur, i1l s’agit en fait d'une adresse, c’est-a-dire d'une zone

particuliere de la mémoire.

En Python, la déclaration d'une variable et son initialisation (c'est-a-dire
la premiere valeur que l'on va stocker dedans) se font en méme temps.

Variables et opérateur d’affectation

Python a « deviné » que la variable était un entier. On dit que Python est un langage au
typage dynamique.

Python a alloué (réservé) l'espace en mémoire pour y accueillir un entier. Chaque type de
variable prend plus ou moins d'espace en mémoire. Python a aussi fait en sorte qu'on
puisse retrouver la variable sous le nom x.

Enfin, Python a assigné la valeur 2 a la variable x (affectation).

= Dans d'autres langages (en C par exemple), 1l faut coder ces différentes étapes une par une.
Python étant un langage dit de haut niveau, la simple instruction x = 2 a suffi a réaliser les 3
étapes en une fois !

Variables et opérateur d’affectation

Sous Python, on peut assigner une valeur a plusieurs variables
simultanément.

On peut aussi effectuer des affectations paralleles a 1'aide d'un seul
opérateur

>>>IX =y =28 Affectations multiples
>33 X

8
> |

>>>
>>> |

¥y = 14.2 , 20 Affectations paralléles

>

B ke = b 0O

>

Nommage

Le nom des variables en Python peut étre constitué de :
lettres minuscules (a a z)
lettres majuscules (A a Z)
nombres (0 a 9)
caractere souligné ().
Vous ne pouvez pas utiliser d'espace dans un nom de variable.
Par ailleurs, un nom de variable ne doit pas débuter par un chiffre et il

n'est pas recommandeé de le faire débuter par le caractere _ (sauf cas tres
particuliers).

De plus, 1l faut absolument éviter d'utiliser un mot « réservé » par Python
comme nom de variable (par exemple : print, range, for, from, etc.).

Et, bien que possible avec Python 3, 'utilisation de caracteres accentués
dans les noms des variables est fortement déconseillée.

Enfin, Python est sensible a la casse, ce qui signifie que les variables TesT,
test et TEST sont différentes.

Affichage

Pour afficher la valeur a 1'écran, 1l existe deux possibilités. :

1 - La premiere consiste a entrer au clavier le nom de la variable, puis <Entrée>.

=331 = 2
>>>a

2
>>>msg = "Quol de neuf
>>> | mMSg

'Quol de neuf ?2°
>

7 [}

2 - I'instruction print :

>>>|print (msqg)
'Ouol de neuf ?

Affichage

la fonction print() affiche I'argument qu'on lui passe entre parenthéses et un retour a

ligne.

La fonction print() peut également afficher le contenu d'une variable quel que soit
son type. Par exemple, pour un entier :

=== Var 3
2 = r_-.;j_-r_m;ar'
a =

11 est également possible d'atticher le contenu de plusieurs variables

paa— 37

2 =>> nom = "John'

3 =>> printinom, "a , X, ans)
John a 32 ans

A l'intérieur d'un programme, vous utiliserez toujours l'instruction print.

Saisie de données

Pour permettre a l'utilisateur d’'un programme de saisir la valeur d’une
varlable x, on utilise la fonction mnput(),

ATTENTION : la variable saisie est toujours de type str. Pour la convertir en
nombre, 1l faut utiliser la fonction int() ou la fonction float() :

I . G i .
>>> X = 1nput ("salsir la valeur de x : ")

salsir la valeur de x : 12
3> X

!12!

>>>| type (X)

Llass "5Eyts

>»>|X = 1nt (x)

i x = int(input("saisir la valeur de x : "))
12
>>>| Lype (X) ‘ ,
<class 'int'> # Quelle est, a votre avis, l'utilité de la fonction type() ?

Ecrivez un programme en Python qui demande a l'utilisateur de saisir son
nom, puis affiche un message de salutation personnalisé.

Exercice

Ecrivez un programme en Python qui demande a l'utilisateur
de saisir deux nombres entiers. Le programme doit ensuite
calculer la somme de ces deux nombres et afficher le résultat.

Saisie de données

» Exemple

fexemple de programme Python
x = float (input ("la valeur de x : "))
y = float (input(™la valeur de vy : "))

DEIBNEI"E ™.&x)
print("y :",¥)

test = (x +v) / 2

print ("Réesultat :",test)

Les types de variables

Types Simples Types Composites
» Nombre (integer/float) : 976, 0.14, - » Liste:[1,2,3]
9.99) » Tuple:(1,2,3)
» Chaine de caracteres (str) : "Salut” » Dictionnaire : { "Nom" : "Ali", "Age" -
» Booléen (boolean) : True, False 29}
» Aucune valeur : None » Ensemble (Set) : { "Ali", 29,
"Etudiant"}

Les nombres

entlers (Integer ou Int) : réels ou virgules flottantes (float)

3>l B, ¢ =41; 2

5 a seront de type 1int
e . W, Z=20.08, 2., 0

: B C
o | X, ¥ 2L ¥ B&font a8 type float

et
2 ¥

Les nombres — Opérateurs arithmeétiques

Opérations sur les types numériques - opérateurs

Opeération
xX+y
X-Yy

X *y

x/ly

x Iy

X %Yy
abs(x)
int(x)
float(x)

X**y

Reésultat

somme de x ety

difference de x et y

produit de x ety

quotient de x et y (division reelle)
quotient entier de x et y (division entiere)
reste de x sur y (modulo)

valeur absolue de x

X converti en nombre entier

x converti en nombre a virgule flottante

x a la puissance y

) W

LN

LN

-
0D

Les nombres — Opérateurs arithmeétiques

Opérations sur les types numeériques - opérateurs combinés : permet
d’effectuer une opération et une aftectation en une seule étape,

Opérateur Exemple Raccourci pour : =
s> 1 = 8

+= x+=5 x=x+5 Z 1 2+ 1
| 1

-= X -=3 X=x-3] :

k= x *= 6 X=x%*6 + 1 4= |
| 1

/= x /=2 x=x /2 - -

k= k=4 % = x ¥k 4 - = 2

%= x%=5 X=%x%5 g 4

Les chaines de caracteres

>>>|a = "bonjour"

1l faut I'entourer de guillemets
>>>|a ‘§§§§§§§
'bonjour" » doubles
>>>|b = '"salul' g) simples,
>>>|b

» trois guillemets successifs doubles ou simples)

'salut' l
=SS C — n"ngirafenun

>>>| ¢

'girafe'

S d — l!!lionrll
>>>|d

"130on°

Les chaines de caracteres

» Opérations sur les chaines de caracteres : Pour les chalnes de caracteres, deux
opérations sont possibles, 'addition et la multiplication :

>>> chaine ‘Salut”
=>>> chaine

"Salut

=== ghaine + " Python"
‘Salut Python'

==> ghaine * 3
"SalutSalutSalut’

= O L 4w LAl [=

Opérations

» Opérations illicites

==> Ttota” *-1.3
Traceback (most recent call last):
File "<stdin=", line 1, in =module>
TypeError: can't multiply sequence by non-int of type 'float'
>»> "toto” + 2
Traceback (most recent call last):
File "<stdin=", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

00 =] O & 3 R

» Notez que Python vous donne des informations dans son message d'erreur.

Exercice

» Essayez de prédire le résultat de chacune des instructions suivantes, puis
vérifiez-le dans l'interpréteur Python :

1) (1+2)**3 = 27

2) "Da" * 4 = 'DaDaDaDa’
3) "Da" + 3 TypeError

4y ("Pa"+"La") * 2 = 'PalLaPala’
5) ("Da"*4) / 2 TypeError

6) str(4) * int("3") = '444°

7y int("3") + float("3.2") = 6.2

g) str(3) * float("3.2") TypeError

9) str(3/4) * 2 '0.750.75"

Les Booléens

Un booléen est un type simple de
Python qui n'a que deux etats.

Les Booléens sont basés sur la prise des >>> chl = "python"
décisions. >>> ch2 = "Python"
Deux valeurs possibles : I'rue (Vrai) ou >>> ichl == ch2
[False (faux) False | ¥ .
>>> ch2 python
Exemple : >>> chl == ch2

True
>3

Si le feu est rouge, alors arrete-toi.

Les Booléens

les expressions booléennes sont le plus souvent constituées :

Opérateur

Signification
strictement inférieur
inférieur ou égal
strictement supérieur
supérieur ou égal

égal

different

Opérateur

AND

OR

NOT

Signification

Renvoie True si toutes les deux
expressions sont évaluées a True

Renvoie True si une des comparaisons
vaut True

Renvoie True si la comparaison vaut
False (et inversement)

Les Booléens

Les opérateurs logiques créent des conditions composées dans une formule
AND : Vrai lorsque les deux valeurs sont vraies
OR : Vrai si I'une ou l'autre des deux valeurs est vraie

NOT : Fait passer une valeur de faux a vrai, ou inversement

Les tables de vérités :

% | B |AETE il By lAOHE
FAUX | FAUX | FAUX 4 [NONA FAUX | FAUX | FAUX
FAUX | YRAI | FAUX FAUX | YRAI FAUX | YBAI YREAI
vRAl | FAUX | FAUX VRAI | FAUX vRAl | FAUX | vRAl
vBAl | vRAI | VRAI vRAl | vRAl | vRAI

Les structures de controle

Les structures de controle

» Les structures de contrdle sont les groupes d'instructions qui déterminent
I'ordre dans lequel les actions sont effectuées dans le programme.

Sequence Selection Iteration

} l }

ints1 T — E
l F T

nts2 ints1 .
1 mnts1

ints3 —p 1Nnts2 I
I ! |

Séquence d'instructions

Sauf mention explicite, les instructions d'un programme s'exécutent les
unes apres les autres, dans l'ordre ou elles ont été écrites a l'intérieur du
programme.

Le « chemin » d’exécution est appelé un flux d'instructions, et les
constructions qui le modifient sont appelées des instructions de controle

de tlux.

Python exécute normalement les instructions de la premiéere a la
derniere, saut’ lorsqu'il rencontre une structures de controle comme une
instruction conditionnelle « 1t ». Une telle instruction va permettre au
programme de sulvre différents chemins suivant les circonstances.

Les instructions conditionnelles

» Une condition (test) est une expression écrite entre parenthese a valeur
booléenne.

» Les instructions conditionnelles (if en python) servent a n'exécuter une
Instruction ou une séquence d'instructions que si une condition est vérifiée.

k-
L

Les instructions conditionnelles

Forme 1: 1f

La valeur de la condition sera interprétée en True ou False . Si la condition
est correcte (évaluée a True) : le bloc d'instructions s’exécuté

-

if condition :
bloc d'instructions

>>> a = 150
>>> if (a > 0):

IR print("nombre positif ")

Indentation obligatoire

Les instructions conditionnelles

Forme 2 : 1t ... else

S1 la condition mentionnée apres it est VRAI (True), on exécute le bloc 1; si
la condition est fausse, on exécute le bloc 2 d’instructions.

/}f condition : >>> a = 150
bloc 1 d'instructions >>> if (a > 9):
else : . o print("nombre positif ")
bloc 2 d'instructions ... else:
4/ <o print("nombre négatif ou nul")

Exercice

Ecrire un programme python qui demande un nombre entier 4 I'utilisateur,
puis qui teste et affiche s'll est négatit' ou positif.

Les tests :

Forme 3 : Les tests imbriqués

On peut faire mieux encore en utilisant aussi l'instruction elif (contraction de
« else 1t »)

>>> a = 150

>>> if (a > 0) :

bloc 1 d'instructions coe print("nombre positif ")

. elif (a < @) :
print("nombre négatif ")

bloc 2 d'instructions ... else :

print("nombre nul")

if condition 1 :

elif condition 2 :

else :

bloc 3 d'instructioTi//

Les boucles (Rappel)

Instructions 1tératives : les boucles

Les boucles servent a répéter l'exécution d'un groupe d'instructions un certain
nombre de tois

On distingue deux sortes de boucles en langages de programmation python :
» Les boucles (while) : Répéter une action tant qu'une condition est vraie.
Exemple : Tant que , Je

» Les boucles (for) : Répéter une action un nombre spécifique de fois.

Pour

[Une Condition est une expression qui peut étres
évaluée en True ou False

La boucle while

» La boucles while permet de répéter des instructions tant qu'une certaine
condition est réalisée.

€ A
— > True
-\letlﬂn :
while condition :
. . False

Blocs instruction A " — .

! \ InstructionA
| ,

La boucle while

bonjour
bonjour
bonjour
bonjour
bonjour

I Y [T [
V VvV V VYV
I T I
1 [|

VvV V V V Vv

o | | | I | B |

)
)
)
)
)
)

i =0
| { 1 <€ 5)2

print ("bonjour")

1 = 1+1 bonjour
printiil bonjour
bonjour

bonjour

bonjour

Les boucles - while

La structure répétitive while permet d’eftectuer une instruction ou des

instructions (Bloc d’'instructions) tant qu’une condition est satisfaite (évaluée
a True)

Ce qu1 signifie : tant que la condition est vraie, on exécute le bloc
d’instructions.

while condition

Exemple 1 Blocs instructions
Exemple 2
1=0 i=0
while i<10: L.
. " . . while i<10:

print("bonjour™) i .) N

$4=1 print("bonjour")
Boucle correcte : Bougle infinig L
Bonjour s’affiche 10 Bonjour s’affiche infiniment (sans
fois. arrét)

Exemple pratique

Supposons que nous voulons écrire un programme qui demande
a l'utilisateur de saisir un mot de passe. La boucle continuera
jusqu'a ce que l'utilisateur saisit le mot de passe correct. .

Mot de passe correct : PWD@2023

Exemple pratique

Supposons que nous voulons écrire un programme qui demande a
I'utilisateur de saisir un mot de passe. La boucle continuera
jusqu'a ce que l'utilisateur saisit le mot de passe correct.

mdp = input("Saisir le mot de passe : ")
while (mdp != "PWD@2023") :
print(" mot de passe incorrect ")

mdp = input("Saisir a nouveau le mot de passe : ")
print("Mot de passe correct - Bienvenue - ")

La boucle for

Dans la plupart des langages de programmation, la structure répétitive for permet de répéter des
instructions un certain nombre de fois.

En python, une boucle for est utilisée pour itérer sur une séquence (c’'est-a-dire une liste, un tuple, un
dictionnaire, un set, un intervalle de valeurs, ou une chaine de caracteres). Autrement dit, elle
permet de parcourir une séquence du premier au dernier élément.

Exemple d’utilisation : Affichage aprés exécution :

elements de l'iterateur
\

| \ i a pour valeur ©

for\i)in [0, 1, 2, 3]: i a pour valeur 1
print("1 a pour valeur”, 1) i a pour valeur 2

i a pour valeur 3

itérateur

La boucle for

» La boucle For peut parcourir une séquence de nombres en utilisant la fonction “range®. La fonction
range () renvole une séquence de nombres, commengant par @ par défaut et incrémentée de 1 (par
défaut), et s’arréte avant un nombre spécifié. Syntaxe : range(start, stop, step) avec :

» start (facultatif) : Un nombre entier spécifiant a quelle position commencer. La valeur par défaut
est O.

> stop (Requis) : Un nombre entier spécifiant a quelle position s’arréter (non inclus).

> step (facultatif) : Un nombre entier spécifiant I'incrémentation. La valeur par défaut est 1

>>> for 1 in range (0,10, 1) | |

print (i)

O O I MW NFEO

Exercice
Ecrivez un programme qui affiche le mot « Informatique » 10 fois

Solution | : while

Informatique
Informatique
Informatique
Informatique
Informatique

while(n < 10):

print("Informatique")

=n+1

Informatique
Informatique
Informatique
Informatique
Informatique

Solution 2 : for

for m in range(0,10,1):

print("Informatique")

Choisir la structure de boucle adaptée

Nombre d'itérations
est-11 connu a l'avance ?

Boucle
While

Les données composites

Les données composites

» Une donnée (variable ou expression) de type composite est une entité qui
rassemble dans une seule structure un ensemble d’entités plus simples.

» Les types de données composites sont constitués d'autres types de données,

» Types Composites : Liste, Tuple, Dictionnaire, knsemble (Set)

Types Composite

: : Type
Type Simple Type Simple

Type simple . o oo

Les listes

Une liste est une structure de données qui contient une série de valeurs.
Python autorise la construction de liste contenant des valeurs de types différents.

Une liste est déclarée par une série de valeurs séparées par des virgules, et le tout encadré par des
crochets.

nom_liste = [10, 20,“Alice", 30, “Bob”]

>>>! animapx = ["girafe™; "tigre", "singe", "souris"]
Fid tarldes = 5, Z.5,. 1.75. 9.15]
>»ximixte = [“girafe“, 5; "souris®; 0:15]

>>>| animaux

[*girafe', ‘tigre', 'sSinge', 'sScuris']
>>>|tailles

(5, 2.5, 1.5, 0.5
>>> mixte

| [Ygirsitel; 5, YSouris®; 0.15]

Les listes

Les listes sont des séquences, c'est-a-dire des collections ordonnées d'objets. On
peut accéder a chacun d'entre eux individuellement sil'on connait son indice (index)
dans la liste.

La liste peut étre indexée avec des nombres négatifs ou postits selon le modele
sulvant :

liste : |"girafe”, "tigre”, "singe"”, "souris"]
indice positif : @ 1 2 3
indice négatif : -4 -3 -2 -1

»b> animanx: = ["girafe"; "Ligre", "singe"™, ™souris"]
>>>| animaux[-2]
'singe’
>>>| animaux[0]
'girafe'
>>»>| animaux[3]
'souris’
>5>

Les listes

Tranches : Un autre avantage des listes est la possibilité de sélectionner une partie d'une liste en
utilisant un indigage construit sur le modele [m:n+17] pour récupérer tous les éléments, du m-ieme au
n-ieme (de 1'élément m inclus a 1I'élément n+1 exclu). On dit alors qu'on récupére une tranche de la

liste.
>>> animaux = ["girafe™,; "tigre", "singe"™, "souris"]
>>>|animaux[0: 2]
[*girafe', '‘tigre']
>>>|animaux[0:3]
F*girafa? "tigre! rsinge"]
r r
>>>animaux[1:]
[YEaigre! *singe’ 'souris']
F f
>>>animaux|:1]
[*girafe"]
>>>|animaux|[:]
[*girafe’ 'tigre® Exinge! "souris']
r r f
>>>animaux[l:-1]
[YEigre', *singe*)
>>>|animaux[—-3:]
[YE£igre!',; *singe'; 'sonrist]

Les listes

Tranches : On peut aussi préciser le pas en ajoutant un symbole deux-points
supplémentaire et en indiquant le pas par un entier.

>>>|animaux = ["girafe™; "tigre™, "singe", "souris"]
>>>animaux[0:3:2]
['girafe', '"singe']
PR X = [0y 1 24 3¢ 4 By 8y T By 9
>>> | X
[0, 1,
e k1]
W, Ty e 3y 4, B & 1 8, 5
=% 2 [-0
[y 2y Ay 6;]
>>> | X [1:3]
[0, 3, 6, 9]
== X095 3]
[0 3y 6]
>2>(x[l:6:3]
11, 4]

Les listes

Opération sur les listes : Tout comme les chaines de caracteres, les listes
supportent 'opérateur + de concaténation, ainsi que l'opérateur * pour la
duplication.

>>>lanil = ["girafe™, "tigre"]
>>>ani2 = ["singe", "souris™]
>>>lanil + ani2
[*girafe'; *'tigre', 'singe', 'souris!]
FEFAnLL ¥ 3
['girafe'; 'tigre'; *glrate'; ‘tigre'; 'girafte'; 'tigre’]
>>>|

Les listes

» Une liste Python peuvent étre modifiée.

. . >»>»{a. = [1, 2, 3]
On dit que les listes sont mutables. s
. [Y 2 3
> 4 types de mutations : >>>la = a + [5] # Ajout par addition
e I |
» Ajout : 'opérateur de concaténation + ou la (L, 2, 3, 51 ,
) >>>a.append(10) # Ajout par la méthode append()
méthode append(), >>>|a
7 : /1 2 \ [1f 2! ?’r 51' ID]
La méthode append() ajoute un seul élément a la fin >>>/a[2] = 15 # Modification
' ot >>>|a
d'une liste; (1, 2, 15, 5, 10]
» Modification : par substitution; s i - S

. / . SN : [1: 2 15y =2%; 5+ 10]
g IHSGI‘UOH, La méthode msert() 1Nsere un ObJet >>»>|del a[3] # Suppression par 1l'instruction del

dans une liste a un indice déterminé; F¥H 2
fh. & ds, 5. 381

» Suppression. L'instruction del supprime un
élément d'une liste a un indice déterminé

Les listes - Méthodes

len(nomListe) : Affiche la taille de la liste >>>|x = [33,24,19, 46, 38]

sum(nomListe) : Calcule la somme des éléments de la liste e éen (x)

max(nomListe) : Cherche la valeur maximale dans la liste >>>| sum (x)

min(nomListe) : Cherche la valeur minimale dans la liste >>> rlni (x)

nomListe.remove(Element) : Retire un élément de la liste o ;fn Fi

nomListe.sort() :Triela liste s 5 Sremwe (19)
=22 X

nomListe.pop() : Retire le dernier élément de la liste
[33, 24, 46, 38]

>3 X.s50TrE ()

-2 ' 4

[Z2d4;: 33, 38; 146]
>>> | X.pop()

46

25> X

p 6l Pr.Abdelouafi ikidid ~ abdelouafi.ikidid@gmail.com

Exercices

Exercice 1 :

Constituez une liste semaine contenant les 7 jours de la semaine.

A partir de cette liste, comment récupérez-vous seulement les 5 premiers jours de la
semaine d'une part, et ceux du week-end d'autre part ? Utilisez pour cela l'indicage.

Trouvez deux manieres pour accéder au dernier jour de la semaine.

[Exercice 2 : Remplir une liste avec 10 entiers donnés par l'utilisateur .Puis, le
programme trouve le plus grand et le plus petit de ces nombres.

Exercice 2

>>> jours = ["lun', 'mar', 'mer',"'jeu', 'ven', 'sam', "dim' |
>>> jours[0:5] # 5 premiers jours

>>> jours[:5] # 5 premiers jours

>>> jours[5:7] # week-end

>>> jours[-2:] # week-end

>>> jours[6] # dernier jour

>>> jours[-1] # dernier jour
>>> jours

Exercice 2

1=[]

#Remplissage

for i in range(10):
1.append(int(input("Donner un nombre:")))

#Recherche le pp et pg

#1- initialisation

min=1[0]
max=1[0]
#2 -recherche dans le reste
for elt in 1:
if min>elt:
min=elt
if max<elt:
max=elt

#3 affichage

print("Le plus petit :",min)
print("Le plus grand:",max)
print(1l)

Les chaines de caracteres

Chaines de caracteres <> Données composites

Une chaine de caracteres est une donnée composite de type string str qui est
une suite d’entités (ou items) plus simples, =® les caracteres.

On peut considérer une chaine de caracteres comme une séquence ordonnée
de variables qui contiennent chacune un caractere. Les caracteres sont indexés
a partir de 0.

S1 on crée une varlable de type str avec l'affectation chaine = "Hello™, on
obtient sa longueur avec len(chaine) et on accede au caractere d’'indice 1 par
son nom qul est chaine[1].

Le type str est un type de variable non mutable, c’est pourquo1 on ne peut
modifier le premier caractere avec chaine[0]="V" par exemple.

Les chaines de caracteres

Exemple

}}}jphraﬁe = 'Python est un super langage de programmation'

. >>>|phrase[0: €]
On observe que : s
, . N >>>|phrase[0]
on peut désigner un caractere [
. . . >>> | phrase[-10]
directement par son indice ; s
. . =¥ iphradse [—10:]
on peut compter a partir de la fin ; 'grammation’
>>>|phrase[7:]
on peut extraire des tranCheS° | 'est un super langage de programmation'
) >>> phrase[:7]
: ' . | *PyEhon "
1l n'est pas possible de changer une .- phraseror = -
. ' A | Traceback {most recent call last):
partle d'une chaine. File "<pyshell#55>", line 1, in <module>
phrasse D] — Tp¥

| TypeError: 'str' object does not support item assignment
>>>|chaine = phrase[0:7] + 'v3'
>>>|chaine

'Python v3'

. :
LXETCICE

Ecrivez un script qui détermine si une chaine contient ou non le caractere
«a».

Ecrivez un script qui compte le nombre d'occurrences du caractere «e» dans
une chaine.

Les tuples

Les tuples (« n-uplets » en frangais) sont des objets séquentiels correspondant aux listes (itérables,
ordonnés et indexables) mais 1ls sont toutefois non modifiables.

Les tuples sont un autre type séquentiel de données.

Un tuple est une donnée immuable a la diftérence d’une liste qui est altérable. Cela signifie qu’on ne
va pas pouvoir modifier les valeurs d'un tuple aprés sa création.

L'intérét des tuples par rapport aux listes réside dans leur immutabilité

Pratiquement, on utilise les parenthéses au lieu des crochets pour les créer :

‘>>> B [y 25 3)
>>> |t
(1z 25 3]
>>> | type (t)
celass ‘Euplets
>>> L[2]
’ 3
23| tl0=2]
| @ 2)
s 2] =15
Traceback (most receni call last):
File "<pyshell#5>", line 1, in <module>
. ti2) = 15
| TypeError: 'tuple' object does not support item assignment

Les tuples

Les opérateurs + et * fonctionnent comme pour les listes (concaténation et
duplication) :

i) (1, 2 + [(3; 4)

(Lly 2y G2 &)
Ismad (], &) % 4
(L 2y 2y gy Ly 25 Ay 2

[*=3

Les dictionnaires

Les dictionnaires sont un autre type séquentiel de données.
Leur diftérence réside dans leur facon d'indexer les valeurs.

On a la liberté de choisir nous mémes nos clefs (ou index ou indice) et attribuer la clef
de notre choix a chaque valeur.

Les valeurs d’'un dictionnaire ne sont pas ordonnées a la diftérence des valeurs d’une
séquence.

On accede aux valeurs d'un dictionnaire par des clés

anil = {}

anil["nom"] = "girafe"
anil["taille"] = 5.0
anil["poids"] = 1100

girafe 5.0 | 100
print(anil)

{'nom': 'girafe', 'taille': 5.0, 'poids': 1108}

Les dictionnaires : Itération sur les clés

Si on souhaite voir toutes les associations clés / valeurs, on peut itérer sur un
dictionnaire de la maniere suivante :

2l ani2 = {'oam': "singe', "poids': 79; 'Ltaille’: 1.75]}
>>>|for key in aniZ:
print (key, aniZ[key])

nom singe
poids 70
taille 1.75

>

Les dictionnaires

>>>d = {"nom": "Ali", "age":30; "sport™:["Football®™, "Tennis™]}
>>>|d["nom"] #Afficher les éléments du dictionnaire

*BRli?

>>> d["sport™] #Afficher les éléments du dictionnaire
['Football', '"Tennis"']

>>>|d["email”] = "alil23@est.ma™ #Ajouter un élément au dictionnaire
>>>d["age”] = 40 #Modifier un élément du dictionnaire
>>>d

[*nom": *Ali', ‘age': 40; 'sport': ['Football'; 'Tennis']l, ‘'email': "alilZ3fest.ma‘}
>>>|del d["email"] #Supprimer un élément du dictionnaire

>>>d

[*nom*: *Bl1i', ‘age’: 40, 'sport!': ['Football*; 'Tennis'l)

b

Les ensembles (Sets)

» Les ensembles sont un autre type de données composites.

» Un ensemble est une collection d’éléments modifiables, non ordonnée, sans
index et qui ne peut pas posséder 1'élément dupliqué.

s = {4, 5, 5, 12)
>>>|s

{12, 4, S5}
>>> | type(s)

<class 'set'>
>>>

Les ensembles (Sets)

La fonction interne a Python set() convertit un objet itérable passé en
argument en un nouveau set (opération de casting)

sexiaet([1l, Z; 4; 1])

{1, 2, 4}
el set (2, 2. 2, 21))
{1, 2}

>>>| set (range (5))

{0, 1, 2, 3, 4}

e BEE({Mele 1%L 1. Wele 2N: "2

{'clie 2%, “Ele 1Y)

#pad pek ([N "% The™l)

{'rt:i_'ril 'rtD'r}

>>>|set ("Python version 3")

_['I'ﬂl'r 'E'r 'h'; !v!r !P!r 'D', '5!, lllrlllr 'j—'r !3!{ Yo !F!r !t!}

Les ensembles (Sets)

Nous avons dit plus haut que les sets ne sont pas ordonnés ni indexables, 1l est
donc 1mpossible de récupérer un élément par sa position. Il est également
impossible de modifier un de ses éléments par l'indexation

1 23> 8 set{l1, 2, 4, 1]}

2 >>> &5[1]

3 Traceback (most recent call last):

4 File "<stdin=", line 1, in <=module=

3 TypeError: 'set’ object is not subscriptable
6| =>> s[1] 5

P Traceback (most recent call last):

8 File "<stdin=", line 1, in <module=

TypeError: 'set’' object does not support item assignment

Par contre, les sets sont 1térables :

=>> for element in s:
2 o print(element)
3 Al

4 1

g 2

B 4

Les ensembles (Sets)

Les sets ne peuvent étre modifiés que par des méthodes spécifiques.

1 5 set{range(s))
2 -~

3 {8, 1, 2, 3, 4}

y =»> S.add(4)

3 === 5

3] 18, 1, 2, 3, 4;

7 >> S.add(472)

8 =2m &

9 g, 1, 2, 3, 4, 472}
16 >»> g.discard(8]
11 =m> 8
12 i1, 2, 3, 4, 472}

les sets ne supportent pas les opérateurs + et *

Les fonctions

Qu’est ce qu’une fonction

F(x) = 2x
X 2X
EXP o | =)
3 6

> Bonjour

Fonctions : Principe et généralités

Les fonctions permettent de décomposer un programme complexe en une série de
sous-programmes plus simples, lesquels peuvent a leur tour étre décomposés eux-

mémes en fragments plus petits, et ainsi de suite...

» Par exemple si nous disposons d'une fonction capable de calculer une racine carrée, nous pouvons

l'utiliser un peu partout dans nos programmes sans avoir a la réécrire a chaque fois.

Vous connaissez déja certaines fonctions Python. Par exemple range() ou len(). Pour
l'instant, une fonction est a vos yeux une sorte de « boite noire » :

» A laquelle vous passez aucune, une ou plusieurs variable(s) entre parentheses. Ces variables sont

appelées arguments.

» Qui effectue une action.

» Et qui renvoie un objet Python ou rien du tout oy il o’

passage de 0, 1, ou
plusieurs argument(s)

2) action effectuge

fonction(..., ...)

programme
principal

3) renvoi d'un objet
Python ou de rien du tout

Fonctions : Déclaration d’une fonction

Pour définir une fonction, Python utilise le mot-clé def. Si on souhaite que la

fonction renvoie quelque chose, il faut utiliser le mot-clé return.

~
def nomFonction(parametrel,parametre2,..) :

instructions
return valeur_de_retour

g/
lI'indentation de ce bloc d'instructions (qu'on appelle le corps de la fonction) est

obligatoire.

valeur_de_retour = récupérable dans une variable

Exemple :
>>> def carre(x):

return x**2

>>> print(carre(2))

Fonction sans paramétres sans retour

def myFunction() :
instructionl
instruction2

> myFunction()

Fonction avec paramétres sans retour

def myFunction(pl, p2, ..)
instructionl
instruction2

Fonctions : Déclaration d’une fonction

Fonction sans parametres avec retour

def myFunction() :
instructionl
instruction2

return valeur

> var = myFunction()

Fonction avec parametres avec retour

> myFunction(valeurl, valeur2, ..

def myFunction(pl, p2, ..)
instructionl
instruction2

return valeur

> retour

myFunction(valeurl, valeur2, ..

Fonctions : Déclaration d’une fonction

Fonction sans parametres sans retour Fonction sans parametres avec retour
>>> def hello(): def filiere() :
print("bonjour") . return "SIR"
bonjour ‘SIR’
Fonction avec parametres sans retour Fonction avec paramétres avec retour
>>> def bonjour(p) : >>> def fois(x, y):
. print("bonjour ", p) e return x*y
>>> bonjour("mohamed") >>> fois(2, 3)
bonjour mohamed 6
>>> prod = fois(2, 3)
>>> prod
6

abs()

all()

any ()
ascii()
bin()

bool()
breakpoint()
bytearray ()
bytes()
callable()
chr()
classmethod()
compile()

complex()

Oon peut

delattr()
dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()

hasattr()

découvrir toutes les fonctions built-in

Built-in Functions
hash()
help()

hex()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()

map ()

max()

Fonctions : Fonctions prédéfinies

memoryview()
min()
next()
object()
oct()
open()
ord()
pow()
print()
property()
range()
repr()
reversed()

round()

set()
setattr()
slice()
sorted()
staticmethod()
str()
sum()
super()
tuple()
type()
vars()

zip()

__dimport_ ()

https://docs.python.org/3/library/functions.html

Fonction Description Exemple
print()
len()

type()

sum()

Affiche une valeur print("Bonjour")
Donne la taille d’une chaine ou d’une liste len("Python") - 6
Donne le type d’une variable type(3.14) » <class 'float'>

Fait la somme d'une liste de nombres sum([1,2,3]) » 6

max() Donne la plus grande valeur d'une séquence max([10, 20, 5]) » 20

min() Donne la plus petite valeur min([10, 20, 5]) » 5
round(3.14159, 2) » 3.14
sorted([5, 2, 9]) » [2, 5, 9]

round() Arrondit un nombre

sorted() Trie une liste

=

Xercices

Exercice 1 :

Proposer une fonction en python qui permet de calculer la somme des éléments d’une liste

Utiliser cette fonction pour calculer la somme des éléments d’une liste L. dont les éléments sont
générés aléatoirement.

Exercice 2 :

Proposer une fonction qui construit une liste les diviseurs d’'un nombre la fonction doit retourner la
liste construite.

tester la fonction avec un programme de test.

Exercice 38 : Utilisation des fonctions récursives

Une fonction récursive est une fonction qui s’appelle elle-méme, toutetois, il taut faire attention a la
condition d’arrét sinon on risque d’exécuter la fonction a l'infinie

Proposer une fonction qui calcule la factorielle d’'un nombre

Utiliser la fonction pour calculer la somme des tactorielles des 100 premiers nombres positifs

I Les modules standard et paquets Python

Détinition d'un module

Module Python : On appelle “module” tout fichier constitué de code Python

(c’est-a-dire tout fichier avec I'extension .py) importé dans un autre fichier ou
script.

On les appelle aussi bibliotheques ou lzbrarzes.

[l y a trois types de modules Python :

» Les modules standards qui ne font pas partie du langage en so1 mais sont intégrés
automatiquement par Python ;

» Les modules développés par des développeurs externes qu’on va pouvoir utiliser ;

» Les modules qu'on va développer nous mémes.

Pour utiliser un module, on utilise la commande import.

Détinition d'un module

Un module est un fichier Python (.py) contenant un ensemble de fonctions, de classes et de variables prédéfinies et
fonctionnelles, que vous pouvez utiliser comme bon vous semble dans votre code !

Par exemple, si vous travaillez sur une problématique faisant intervenir de la géométrie, vous pourriez avoir besoin de :

eometry.
» classes : B y-py
carré — défini par la longueur de son coté, Classeas \GiFlablae T _—.
triangle — défini par la longueur de ses trois CétéS, class carre: pi = 3.14159265350 def aire(geometry object):

phi = 1.61883398875

cercle — défini par son rayon,

class triangle: def angles(triangle):

etc. ;

class cercle:

» variables :

pi : constante indispensable pour calculer I'aire d'un cercle, égale a 3,1415...,

phi : constante représentant le nombre d’or, égale a 1,6180... ;

» fonctions :
aire : qui prend en parameétre un objet géométrique (carré, triangle, etc.) et calcule son aire,

angles : qui prend en parameétre un triangle, et calcule les angles internes de ce dernier,

etc.

Importation de modules

Exemple :

>>> import random

>>> random.randint (0, 10)
4

H H
WN PR

Ligne 1, I'instruction import donne acces a toutes les fonctions du module
random.

Ensuite, ligne 2, nous utilisons la fonction randint (@, 10) du module

random. Cette fonction renvoie un nombre entler tiré aléatoirement entre O
inclus et 10 inclus.

Quelques modules courants

math : fonctions et constantes mathématiques de base (sin, cos, exp,
pi...).
sys : interaction avec l'interpréteur Python, passage d'arguments.

os : dialogue avec le systéeme d'exploitation.
random : génération de nombres aléatoires.

time : acces a I'heure de l'ordinateur et aux fonctions gérant le temps.

Pour la liste complete, reportez-vous a la page des modules sur le site
de Python.

https://docs.python.org/fr/3/library/math.html#module-math
https://docs.python.org/fr/3/library/sys.html#module-sys
https://docs.python.org/fr/3/library/os.html#module-os
https://docs.python.org/fr/3/library/random.html#module-random
https://docs.python.org/fr/3/library/time.html#module-time
https://docs.python.org/fr/3/py-modindex.html

Exemples

datetime
Donne la date et 1’heure actuelles datetime.datetime.now()

randint(a, b) Nombre entier aléatoire entre a et b inclus | random.randint(1, 10)

choice(liste) Choisit un élément au hasard dans une liste | random.choice(['A', 'B'])
random
Nombre réel aléatoire entre 0 et 1 random.random() -» 0.54...

uniform(a, b) Nombre réel aléatoire entre a et b ;aggom.unlform(S, 12)] 3

!l pandas

seaborn

Chapitre 2 : Python pour 'analyse de données

Exploration et traitement de données avec Python.

Les librairies Python pour l'analyse de données

Dans le domaine de l'analyse de données en particulier, voici une liste de
librairies incontourables que nous allons voir dans le cadre de ce cours:
» numpy : librairie de calcul scientifique (algebre, calcul matriciel, stochastique, etc.)

» pandas : librairie permettant la représentation, la manipulation et 'analyse de données
sous forme de tableaux (ou DataFrames)

» matplotlib : librairie de visualisation graphique de données.

» seaborn : librairie de visualisation statistique avancée reposant sur matplotlib, offrant
des graphiques élégants, lisibles et optimisés pour I'analyse des relations entre les
variables (nuages de points, cartes de chaleur, distributions, etc.)

Les librairies Python pour l'analyse de données

Pour importer un package, il faut tout d'abord qu'il soit installé sur la machine (ce qui est d¢ja fait). Ensuite, il faut utiliser les
mots-clés suivants:

import package as alias ou from package import subpackage as alias

Exemple :
Syntaxe 1 : Importer tout le package avec un alias

import numpy as np
Cela vous permet d’utiliser toutes les fonctionnalités de numpy en écrivant simplement np.
Par exemple :

import numpy as np

resultat = np.sqrt(16) # Utilise la fonction racine carrée de numpy

print(resultat) # Affiche : 4.0
Syntaxe 2 : Importer uniquement une partie spécifique du package

from numpy import sqgrt
Cela vous permet d’utiliser directement la fonction sans utiliser l'alias :

from numpy import sqrt
resultat = sqrt(16) # Pas besoin de préciser numpy
print(resultat) # Affiche : 4.0

Numpy

Qu'est-ce que NumPy ?

» Le terme NumPy est en fait I'abréviation de « Numerical Python ». Il s’agit d’'une bibliotheque
Open Source en langage Python.

» NumPy (Numerical Python) est une bibliotheque Python spécialisée dans 9%
» Le calcul scientitique. Qﬁ?
» La manipulation efficace de tableaux de données (appelés ndarray). W

» Les opérations mathématiques vectorisées.

http://www.numpy.org

» Le calcul matriciel, les fonctions statistiques et les algebres linéaires.

» Pourquoi NumPy en Analyse de Données ?
» NumPy est la base de nombreuses bibliotheques comme Pandas, SciPy, Scikit-learn.
» Il permet de traiter rapidement de grandes quantités de données numériques.

» Il optimise les performances grace a des opérations vectorisées (plus rapides que les boucles Python
classiques).

» On utilise cet outil pour la programmation scientifique en Python, et notamment pour la
programmation en Data Science, pour I'ingénierie, les mathématiques ou la science.

http://www.numpy.org/

Utilisation

» Il faut au départ importer le package numpy avec I'instruction suivante :

import numpy as np

» Exemple

>>>1mport numpy as np
>>>np.pil
3:1415926535891793

Tableaux - numpy.array()

Un tableau NumPy (appelé ndarray : n-dimensional array) est une structure de données
qui permet de stocker et manipuler des séries de valeurs numériques sous forme de
vecteurs (11)), matrices (21)), ou tableaux multidimensionnels (31 et).

Clest I'équivalent optimisé d'une liste Python, congu pour les calculs scientifiques rapides.
Création d’un tableau avec numpy.array()

numpy.array(liste _de valeurs)

Exemplel : Exemple2
import numpy as np »>> import numpy as np
tableau = np.array([10, 20, 30, 40]) i np.array([1, 2, 3, 4])
print(tableau) array([1, 2, 3, 4])
»>>»> type(a)
<class 'numpy.ndarray’>
Résultat : »>> a[0]

[10 20 30 40] l a[3]

Tableau 2D

[1 est possible de créer un tableau 2D en utilisant une liste de listes au moyen
de crochets imbriqués. Les listes internes correspondent a des lignes du
tableau.

>»>> b = np.array([[1, 2, 3], [4, 5, 6]])
Exemple

>>> import numpy as np
»»»> b = np.array([[1, 2, 3], [4, 5, 6]])
>»> b
array([[1, 2, 3].
[4, 5, 6]])

»»> type(b)
<class '"numpy.ndarray’ >
>>> b[@,1]

Propriétés utiles d'un tableau NumPy

shape : donne la forme du tableau.

Résultat : (3,) ce qui signifie un tableau a une dimension
import numpy as np contenant 3 éléments.

price_list = [100000, 300000, 250000] | can(): calculela moyenne des valeurs.

\

price_ar ray = np.ar ray(price_'[_ist) Résultat : (lOOOOO + 300000 + 250000) / 8 = 216666.666...

print(price_array) argmax() : donne l'indice de la plus grande valeur.

print("shape:", price_array.shape) Résultat : 1, car 300000 est a la position 1 (en

: : commencant a 0).
print("mean:", price_array.mean()) E)

print("argmax:", price_array.argmax()) cumsum() : retourne la somme cumulée des éléments.
Résultat : 100000 400000 650000

*100000
*100000 + 300000 = 400000
*400000 + 250000 = 650000

print("cumsum:", price_array.cumsum())

Fonctions mathématiques avec NumPy

Fonctions trigonomeétriques Fonctions hyperboliques
numpy.sin(x) sinus numpy.sinh(x) sinus hyperbolique
numMpy.cos(x) cosinus numpy.cosh(x) cosinus hyperbolique
numpy.tan(x) largyenne numpy.tanh(x) tangente hyperbolique
numpy.arcsin(x) arcsinus numpy.arcsinh(x) arcsinus hyperbolique
numpy.arccos(x) arccosinus numpy.arccosh(x) arccosinus hyperbolique
numpy.arctan(x) ARElafgenLe numpy.arctanh(x) arctangente hyperbolique

Fonctions mathématiques avec NumPy

Fonctions diverses

X n

numpy.sqri(x)

numpy.expix)

numpy.log(x)

numpy.abs(x)

numpy.sign(x)

x a la puissance n, exemple : x**2

racine carrée

exponentielle

logarithme neperien

valeur absolue

signe

1!l pandas

Qu'est-ce que Pandas ?

Pandas est une librairie python qui permet de manipuler et analyser
facilement des données.

manipuler des tableaux de données avec des étiquettes de variables (colonnes)
et d'individus (lignes).
Ces tableaux sont appelés Datal'rames.

On peut facilement lire et écrire ces Dataframes a partir ou vers un fichier
tabulé.

On peut facilement tracer des graphes a partir de ces DataFrames grace a
matplotlib.

!l pandas

https://pandas.pydata.org/

Pourquoi utiliser Panda Python ?

Fournit une structure de donnée appelée Dataframe rapide et efficace pour la
manipulation des données avec indexation intégrée ;

Dispose d’outils pour lire et écrire dans des tfichiers de diftérents formats
(.Csv, . Txt, .Xlsx, .Sql, .Hdf5, etc...);

Oftre une flexibilité pour traiter les données de type hétérogenes ou
manquantes ;

Est open source ;
Fournit une documentation trés détaillée et tacile a lire ;

Est utilisée dans une grande variété de domaines universitaires et
commerclaux, hotamment la finance, les neurosciences, I'’économie, les
statistiques, la publicité, I'analyse web. ..

Utilisation

[1 taut au départ importer le package pandas avec 'instruction suivante :

import pandas as pd

DataSet

Prenom
Danya
Gary
Marlowe
Blondie
Sherline
Nolie
Francene
Aylmer

Christian

Nom
Cockman
Blase
Korlat
Della
Satcher
Ivantyewv
Killiner
Dorning

Backsal

email

dcockmanO@fda.gov
gblasel@tinyurl.com
mkorlat2@goodreads.com
bdella3@ycombinator.com
ssatcher4@bloglovin.com
nivantyevb@prnewswire.com

fkilliner6@jimdo.com

adorning7@jugem. jp

cbacksalB@state.gov

genre
Female
Genderqueer
Male

Female
Female
Female
Female

Male

Female

> https://www.mockaroo.com/

https://www.mockaroo.com/

Lecture de données

le nom des colonnes est dans le fichier xlsx et I'index des lignes est numérique

(de 0 an-1)

nom du fichier Excel la feuille Excel (1l’onglet)
importe la bibliotheque pandas .

import pandas as pd

| data = pd.read_excel("NOTES_DATA.xlsx", sheet_name="f1")

print(data)

Chargement des données depuis un fichier xlsx

Prenom Nom email genre Note_CC
Pierce Prozescky Male 2
Jolene Seddon jseddonl@barnesandnoble.com Female 6
Abel Coppo acoppo2@canalblog.com Male
Keefe 0'Neal koneal3@weibo.com Male
Decca Averies daveriesd@nhs. uk Male

996 Chicky Hitter chitterrn@cam.ac.uk Male
997 Jolene Spaughton jspaughtonro@thetimes.co.uk Female

998 Carlita Belt cbeltrp@symantec.com Female
999 Lisha Raspin lraspinrg@google.pl Female
1888 Annabel Sissons asissonsrr@guardian.co.uk Female

Note TP Note_EF age
5 e 16

18 15 18

4 11 15

11 1e 15

Affichage des informations

o data.info()

EE} <class 'pandas.core.frame.DataFrame'>
RangeIndex: 100@ entries, @ to 999
Data columns (total 9 columns):

Column Non-Null Count Dtype

1660 non-null
Prenom 1000 non-null object
Nom 1800 non-null object
email 1600 non-null object
genre 1000 non-null object
Note CC 1000 non-null inté4
Note TP 1060 non-null inté4
Note EF 1000 non-null inté4
8 age 1600 non-null inté4
dtypes: inté4(5), object(4)
memory usage: 70.4+ KB

e
1
2
3
4
5
6
7

Sélection

data.head(), data.tail() :les 5 premiéres ou les 5 derniéres.

data.head()

Prenom Nom email genre Note CC Note TP Note EF age

Pierce Prozescky pprozesckyO@biblegateway.com Male 2 5 0 16

Jolene Seddon jseddon1@barnesandnoble.com Female 6 18 15 18

Abel Coppo acoppo2@canalblog.com Male 4 11 15
Keefe O'Neal koneal3@weibo.com Male 11 10 15

Decca Averies daveries4@nhs.uk Male 19 15

id Prenom Nom email genre Note CC Note TP Note EF
996 Chicky Hitter chitterrn@cam.ac.uk Male 9 6 3
997 Jolene Spaughton jspaughtonro@thetimes.co.uk Female 2 16 9
998 Carlita Belt cbeltrp@symantec.com Female 15 12
999 Lisha Raspin Iraspinrq@google.pl Female 7 7

1000 Annabel Sissons asissonsr@guardian.co.uk Female 20

Sélection

» Sélection colonne

>>>data"email®™]
0 sluisetti0@nymag.com
i hclilverdl@mozilla.com
2 myoselevitch2@sciencedaily.com
3 ekivelle3@plala.or.]p .
4 bspringated@nasa.gov e i Wil N)
'bspringatedlnasa.gov’
995 iclemenconrn@imageshack.us
996 amagrannellro@microsoft.com
997 cazemarrplso-net.ne.jp
998 cgiffonrgljigsy.com
999 lborthwickrr@fotki.com
Name: email, Length: 1000, dtype: object

Sélection ligne

>>>|data.loc|[4]

id 5
Prenom Bernhard
last name Springate
email bspringated4@nasa.gov
genre Male
Note CC | 2.0 B
Note TP 9.76
Note EF 8.08
Name: 4, dtype: object

Sélection de ligne dans la colonne

>asldata"email™] [4:10]

4 bspringated4l@nasa.gov
5 amliles5@state.tx.us
6 ksandyfirthe@weebly.com
7 Jjgallety7@washingtonpost.com
8 sbloomer8@macromedia.com
9 ldeeney9@apache.org
Name: emall, dtype: object

Sélection de plusieurs colonnes

>zxidacal | "Prenom”, "Note CC™ T].head{}
Prenom Note CC
Sharline 1. .43
HOorst 4.28
Mufinella 11 .62
Edouard 12. 82
Bernhard 1237

e . % o

data.columns :les noms des colonnes

>>>|data.columns
Todes(["1d", "Prépom”, 'last name’, 'email', 'genre', ‘Hoke €LY, "Noke TPY,
'"Note EBE'],
dtype="object"')

data.index :les noms des lignes

data.index
RangeIndex(start=0, stop=1000, step=1)

B

data.shape :renvoie la dimension du dataframe sous forme (nombre de
lignes, nombre de colonnes)

>>>|data. shape
| (1000, 8)

Calcul sur les données

>>>|data["Moyenne"] = data["Note CC"]*0.25 + data["Note TP"]*0.25 + data["Note EF"]*0.50
>>>|data
id Prenom last name ... Note TP Note EF Moyenne

0 1 Sharline BULS8EET. wwa 2.99 10..16 6.1850
1 2 Horst Clilverd ..- 1.80 6.80 4.9200
2 3 Mufinella Yoselevitch ... 14.12 11.25 12_08600
3 4 Edouard Kivelle ... 1775 229 12.2875
4 3 Bernhard Springate ... 976 §.08 99125
e 5 996 Ibbie Clemencon ... FeidS 7200 4 81025
996 997 Arthur Magrannell ... 15.54 8.09 10.6725
997 998 Clair AZEMar ... 13.28 0.60 4.9075
998 999 Cherin Giffon .- 2y 1 3513 18325
9949 _1LO4g Linn Borthwick ... 14.16 1O.55 B.0070
[IU0D Tows % 9 columns]

>>2>

Suppression d'une colonne

>>>|del data["Moyenne"]
>>>|data
id Prenom last name = .. Hote CEC Note TP Note EF

0 1 Sharline Lulsetti ... 1.43 2.99 10.16
1 - HOTSsE clilverd ... 4 .28 1.80 6.80
2 3 Mufinella Yoselevitch .. 11.62 14.12 1125
a2 4 Edouard Kivelle ... 12 .82 - g .25
- 5 Bernhard Springate ... 12.37 9:.76 8.08
995 996 Ibbie Clemencon ... l9.76 Teits 2w 30
396 4o Arthur Magrannell ... S Bd 1554 8.39
297 998 Clair Azemar ... o T O 13.28 (1. bl
998 994 Cherin Ciffom ... 5.5 I s O 5
999 1000 Linn Borthwick ... 0.19 14.16 1055
[1000 rows x B8 columns]

-

Dataframes et indexation

Quand on boucle sur un On peut boucler sur les lignes
dataframe, on boucle sur les d'un dataframe, chaque ligne se
noms des colonnes : comportant comme un
namedtuple :
>>>for X 1n data: >>>for x in data.itertuples():
print (x) TR print (x.Prenom)

id Sharline

Prenom Horst

last name Mufinella

email Edouard

genre Bernhard

Note CC Aleta

|Note TP Karlan

Note EF Julio

Saw

Acces selon une condition :

>>>dataldata|[™Note EF"] > 18]

id Prenom last name ... Note CC Note TP Note EF
9 10 Laurena Peeney ... 6.18 el 18.49
1:3 14 Emmanuel Middleweek ... 1«30 2] 18.36
28 2% Rickert fakting .. 18 41 3.32 It Ta
a9 36 Mellicent Addams ... 4.61 19 .62 18 .83
38 39 Ethelda JaITeay cus 0.40 14.18 1.9 .54
937 938 Moishe Rablen ... LG54 9. 73 18.63
940 941 Harriette Yinilek =a: 8.2 19.34 1927
945 951 Amelina CHIE) ¢ 5 N 18.88 18,98 1.9 .94
972 973 Stacie Phythien ... () .59 19,82 18.34
9768 9717% Benedikt Reddlesden ... 18,93 13,558 18. 72
[96 rows X 8 columns]

Mesures Statistiques

= min_value = "nom_de _la colonne"].min()

= max_value = ["nom_de _la colonne"].max()

= sum_value = "nom_de _la colonne"].sum()

= prod_value = ["nom_de la colonne"].prod()

= count_value = ["nom_de _la colonne"].count()

Fonctions sur les dataframes

» data["Col"].mean() :renvoie la moyenne de la colonne Col (en ignorant
les NaN)

fonctions similaires a mean :
» min, max
» sum, prod : la somme, le produit.

» Mesures de Tendance Centrale

» 1 —le mode mode _value = data["nom_de la colonne"].mode()
» 2 —lamédiane mediane value = data["nom de la_colonne"].median()

» 3—1la moyenne mediane_rendement = data["Rendement"]. mean()

L’opération de groupage
La fonction groupby() est 'une des fonctions les plus utiles lorsqu’il s’agit de
traiter des dataframes volumineux dans Pandas.

Une opération groupby consiste généralement a diviser la dataframe, a
appliquer une fonction et a combiner les résultats.

moyenne_ef_par_genre = data.groupby('genre')['Note_EF'].mean()

print(moyenne_ef_par_genre)

genre
Female 19.854737
Male 19.299848

Name: Note EF, dtype: floatée4

matplxtlib

Matplotlib et Techniques d’exploration des
données

Analyse exploratoire des données (AED)

Qu'est-ce que I'Analyse exploratoire des données ?

L’analyse exploratoire des données (AED) est une approche 1nitiale de
I'analyse des données qui vise a résumer leurs principales caractéristiques,
souvent a I'aide de méthodes visuelles et statistiques. Elle permet de :
Comprendre la structure des données disponibles.
Détecter les valeurs manquantes, aberrantes ou extrémes.
[dentifier les tendances, motifs et relations entre les variables.
L'AED constitue une étape cruciale avant l'application de modeles

d'apprentissage automatique ou prédictif, car elle permet de poser les bonnes
hypotheses et de mieux préparer les données.

Analyse exploratoire des données (AED)

Visualisation des données
La visualisation des données est essentielle pour :

» Identifier des tendances globales.
» Détecter des valeurs aberrantes.
» Communiquer efficacement les résultats.
Types de visualisations utiles :
1. Histogrammes :
» Utilisés pour visualiser la distribution des variables numériques.
» Exemple : Analyser la fréquence des rendements mensuels d'un portefeuille financier.
2. Diagrammes de dispersion :
» Montrent la relation entre deux variables numériques.
» Exemple : Etudier la relation entre les taux d’'intérét et les rendements obligataires.
5. Boxplots (Boites a moustaches) :
» Illustrent la dispersion et les valeurs aberrantes d'une variable.
» Exemple : Comparer les rendements mensuels de différents fonds d'investissement.
1. Séries temporelles :
» Visualisent les évolutions de variables au cours du temps.
» Exemple : Suivre I'évolution des prix d’une action.

Analyse exploratoire des données (AED)

Visualisation des données

Visualisation des données en Python

Pour tracer des courbes nous avons besoin de la bibliotheque Matplotlib utilisée dans
ce cours.

S1 vous ne disposez pas de cette bibliotheque, vous pouvez cette commande pour
installer 'environnement adapté.

matplxtlib

o
v o .) 0
L S
" o ey
DATA DOA DA DATA

Analyse exploratoire des données (AED)

Visualisation des données

Matplotlib est une bibliotheque python qui dessine des graphiques. Nul besoin
de connaissances en interfaces graphiques pour créer un graphique
dynamique avec possibilité de zoom et de sauvegarde par l'utilisateur. Il est
d'ailleurs possible de sauvegarder les graphiques en format matriciels comme
le , , etc. et vectoriels comme le et le

Creéation d'une courbe

» Importation de module : import matplotlib.pyplot as plt

» Chaque représentation graphique a une fonction correspondante avec

Matplotlib :
nuage de points ou scatter plot, en anglais : scatter() ;

diagrammes en ligne ou en courbes : plot() ;

4
4
» diagrammes en barres : bar() ;
» histogrammes : hist() ;

4

diagrammes circulaires : pie()

diagrammes en ligne ou en courbes : plot()

L’instruction plot() permet de tracer des courbes qui relient des points
dont les abscisses et ordonnées sont fournies en arguments.

Exemple Soron
5.0 A
import matplotlib.pyplot as plt L
x = [1,3,4,6] | 4.0
y = [2,3,4,1] 3.5 -
plt.plot(x, y) >0
plt.show() # affiche la figure a 1'écran 22
2.0 1
1.5 1
1.0

Creéation d'une courbe

Exemple 2
y = 2x*+3x-4 entre -2 et 2 en utilisant 100 points

>>>|x = np.linspace (-2, 2, 100)
PR Y = 2FXFRE2EI%-1

=pplt.ploti{x.¥y)

[<matplotlib.lines.Line2D object at 0x000002109439C680>]
>>>plt.show()

& Figure

Aed pQE

Les fonctions de base

plt.show() :Pour afficher le résultat.

plt.plot(liste x,liste y) :placera les points de coordonnées
(x_1,y_1), (x_2,y_2), ..., (X_n, y_n)

Exemple :

»>alplE.plot{[1,3;4]; [2,1,6]1)

[<matplotlib.lines.Line2D object at 0x00000210900A6C60>]
>>>plt.show()

plt.axis(x_min, x_max, y_min, y_max) : Cette fonction permet de modifier les
axes du repere qui sera attiché

plt.grid() : Affiche un quadrillage en plus sur notre repere.

Trace de fonctions plus complexes

» Tracé de y = cos(x) + 3 sin(2x)

>>>|import matplotlib.pyplot as plt
>>>|import numpy as np

>>>|1import math

>>> abscisses = np.linspace(-4,4,100)

>>>|ordonnées = [math.cos(x)+3*math.sin(2*x) for x 1in abscisses]
>>> plt.plot (abscisses, ordonnées)

[<matplotlib.lines.Line2D object at 0x000002A9BD24F560>]
>>>plt.show()

=
e
C

Trace de plusieurs fonctions

» Yy = -2X + 3
ry=xt-4x +4

>>>» % = np.linspace({(-1,3,100)

Frxly= =2%x43

2> plt.plot {z,v)

[<matplotlib.lines.Line2D cbject at 0x00000ZA9BD2C8830>]
2>
P>y = x**2 — 4*x + 4

P pltoplot {=.v)

[<matplotlib.lines.Line2D cbject at 0x00000Z2A9BD7548C0>]
>>> | plt.show()

Tracé de diagrammes en batons et histogrammes

» Pour les diagrammes en batons, on utilise la fonction bar(valeurs,effectifs).

» Exemple

import matplotlib.pyplot as plt
X:[31516I7]
y =104, 1, 3, 4]

plt.bar(x,y)
plt.show()

ARES PQ=

Tracé de diagrammes en batons et histogrammes

» Comparer les performances moyennes aux différentes évaluations (Note_TP)
selon le genre. Utile pour détecter d’éventuelles disparités ou biais de
performance selon le genre.

Moyenne de Note CC par genre

import matplotlib.pyplot as plt i d
Calcul des moyennes par genre
mean_notes = data.groupby('genre')['Note_TP'].mean() -
Exemple avec la moyenne de Note_CC uniquement
X = mean_notes.index

y = mean_notes

plt.bar(x, y)

plt.title("Moyenne de Note_CC par genre")
plt.xlabel("Genre") gt
plt.ylabel("Note_CC Moyenne')
plt.grid(True) il |
plt.show() female e

yenne

Note_CC Mo

Male

Tracé de diagrammes en batons et histogrammes

» Histogram : Distribution des ages

» Visualiser la répartition des étudiants selon leur age. Cela permet de connaitre
les classes d’age dominantes et d’ajuster les méthodes pédagogiques selon les

tranches d’age. _ Distribution des ages
250 1+ |
import matplotlib.pyplot as plt
plt.hist(data['age'], bins=4, edgecolor='black') Ezm“'“———"————————"—————————————
plt.title('Distribution des ages') élmm .
plt.xlabel('Age') i
plt.ylabel('Nombre d\'étudiants') Elm
plt.grid(True) so | I R
plt.show() N

Affichages de nuages de points

plt.scatter(abscisses, ordonnées)
Exemple

import matplotlib.pyplot as plt
import numpy as np

x=[1, 3, 2, 1]
y=1[2, 3 1, 3]

2.50

plt.scatter(x,y) 225

plt.show() i Q;

1.00 +

T T T T T T T T T
100 125 150 175 200 225 250 275 3.00

a‘ﬂ:%“% $ Q=

Affichages de nuages de points

Objectit d’analyse :

Observer s’1l existe une corrélation entre les notes de I'examen final (EF) et la
moyenne genrele (Moyenne). Cela permet de savoir si les étudiants qui

réussissent en EF ont aussi tendance a bien performer en Moyenne.
import matplotlib.pyplot as plt

data["Moyenne"] = data['"Note_CC"] * 0.25 + data["Note_TP"] * 0.25 + data["Note EF"] * 0.50

plt.scatter(data['Note_EF'], data['Moyenne']) Note_EF vs Moyenne
plt.title('Note_EF vs Moyenne') ;T Ii!iﬁ
: : ol L ocsta by
plt.xlabel('Note_EF") N =='i"£l||ﬂ:|l’ﬁ
plt.ylabel('Moyenne') Emﬂ_“-:-!H|I|.“I|'|ﬂ!!!|u
. SMHHHHITHLLE

plt.grid(True) HHH LR AL

5.0]] 4
plt.show() m-ﬁ!!.luls |

001 8

0.0 2.5 5.0 75 10.0 125 150 17.5 200
Note_EF

» Un graphique en secteurs (pze chart) est utilisé pour représenter des
proportions ou des parts d’'un tout. Chaque part (secteur) correspond a un
pourcentage de la somme totale.

Répartition des ventes

Produit A

import matplotlib.pyplot as plt

Données

lab = ['Produit A', 'Produit B', 'Produit C']
valeurs = [40, 35, 25]

Graphique

plt.pie(valeurs, labels=1lab) Produit B
plt.title("Répartition des ventes") Produit C

plt.show()

» Objectif d’analyse :

» Mesurer la proportion de chaque genre dans I'échantillon d’étudiants. Cette
information est importante pour comprendre la composition démographique
de la classe ou du groupe d’étude.

import matplotlib.pyplot as plt

genre_counts = data['genre'].value_counts()

plt.pie(genre_counts, labels=genre_counts.index, autopct='%1.1f%%', startangle=140)
plt.title('Répartition des genres')

plt.show()

Répartition des genres

Seaborn

Générez des graphiques complexes

Seaborn

La librairie Seaborn vient proposer une alternative a Matplotlib. Cest
¢galement une librairie permettant de générer des graphiques, tout comme

Matplotlib

1l propose de multiples modeles graphiques prédéfinis de bonne qualité
esthétique, en modifiant les options graphiques par défaut de Matplotlib ;

1l ajoute une interaction avec les data frames afin de faciliter grandement la
génération de graphiques a partir de ceux-ci ;

1l propose un catalogue — tres — dense de fonctions graphiques pour répondre
le plus précisément possible a une problématique donnée

Seaborn étant une surcouche de Matplotlib, 11 y a donc de nombreuses
ressemblances entre les deux librairies

Utilisation

Installation de Seaborn

python -m pip install seaborn

[mportation des bibliotheques

import seaborn as sns
import matplotlib.pyplot as plt

Chargement des données

tips data = sns.load dataset('tips')

»>>|tips

W= Wb o

239
240
241
242
243

[244

data

total bill

2B
100
212
23.
24.

29
.57
22
15
18

rows x 7 columns]

o4
34
01
€8
59
03
18
&7

g2
78

Wl W= =

W = k2 kaon

tip
.01
.66
.50
-31
.61
.82
.00
.00
<75
.00

sex smoker

Female
Male
Male
Male

Female
Male

Female
Male

Male
Female

No
No
No
No
No
No
Yes
Yes
No
No

day
Sun
Sun
Sun
Sun
Sun
Sat
sSat
sSat
sSat
Thur

time
Dinner
Dinner
Dinner
Dinner
Dinner

Dinner
Dinner
Dinner
Dinner
Dinner

Siz

e B G Do (D

| SR W T SN T % T PV

=

xemples de visualisations avec Seaborn

port matplotlib.pyplot as

tips _data = sns.load dataset(tips')

sns.barplot(x="day’', y="tip', data=tips data)
plt.title('Distribution des pourboires par jour')
plt.xlabel(' Jour de la semaine’)

plt.ylabel('Montant du pou ire’

1t . show()

Distribution des pourboires par jour

Montant du pourboire
b=t (2%) mJ
wn o wn

£
(=]
I

=
i

e
o
I

Thur Fri Sat sun
Jour de la semaine

$ Q=

Exemples de visualisations avec Seaborn

Nuage de points - Relation entre la facture et le pourboire

l1t.title('Relation entre la facture et le pourboire’

F.xlabel('Facture totale
] L ylahel{_ 'i-'.-::: ncant du pourpolire

Relation entre la facture et le pourhoire

t.show()

10 ~
— 8 1
W ®
=
8 ® @ s
[
S 6 @
3 or . T
= . ees oo %0 % °e
et L] & 8 L]
= @ e @
E a4 ™ ™ m‘i.o'i". ® en ° »
®
E .Y @ fr. b .lll:a’ - ’
.irt:l-io'? 1g8e "es® %0 - e
--_-uE-. -.%n a © . L
a? au® Y9 g g
2 -am,u‘n'-.lm:n e®m ed g
d:ag.‘i g 5 & .
s eoe @ ® =
T T
10 20 30 40
Facture totale ($)

Exemples de visualisations avec Seaborn

Histogramme - Distribution des factures

-histplot(tips data| "total bai
plt.title(' Distribution des factures®'’

1t .xlabel(' Facture totals

plt.ylabel('Nombre de clients’

-show() Distribution des factures

Nombre de clients
[%]
] o

T T T
10 20 30 40 50
Facture totale (%)

=

xemples de visualisations avec Seaborn

sns.violinplot(x="sex', y="tip', data=tips_data)
plt.title('Distribution des pourboires par sexe')
plt.xlabel(' Sexe’)

plt.ylabel('Montant du g

§ J iy g E—.f’LDWI: :I Distribution des pourboires par sexe
10
g o]
=
=
[
2
a 6
=
=
et
%
2 44
=}
=
2
04
T T
Male Female
Sexe
» +QE B

I Machine Leraning et L'analyse prédictive

Machine Learning (Apprentissage automatique) : Définition

Qu'est-ce que c'est l'apprentissage (Learning) ?

Dans le contexte de l'intelligence artificielle (IA), I'apprentissage désigne le processus par lequel un
systeme ou un modele informatique améliore ses performances sur une tache donnée a partir de
données ou d'expériences, sans étre explicitement programmé pour chaque situation.

Cela correspond a ce que l'on appelle généralement 1'apprentissage automatique (ou machine
learning).

Machine Learning

T e e e e e e ™ Intelligence Machine
i ! artificielle Learning

Le Machine Learning est une sous-discipline de I'A

Machine Learning (Apprentissage automatique) : Définition

» Processus :

» Collecte de données.

» Création d'un modéle basé sur ces données.

» Evaluation et amélioration du modéle.

APPRENTISSAGE automatique : Mode¢le

L’apprentissage automatique (ML) nous permet de construire des systemes
informatiques qui apprennent tout seuls a partir des données qu’ils utilisent.
Encore mieux : 1ls sont capables d’améliorer leur performance au cours du
temps, en s’enrichissant de nouvelles données.

Une fois que le probléeme est défini, le programme d’apprentissage
automatique va avolr besoin d’'un modele sur lequel s’appuyer.

\ Y4
(A

oo

Fonctionnement du machine learning

» L'idée centrale du machine learning est d’apprendre a partir de données.

» Le Machine Learning utilise des algorithmes pour développer des modeles
prédictifs a partir de jeux de données (datasets, en anglais)

» Le machine learning repose sur deux piliers fondamentaux :

» — Les données, qui sont les exemples a partir duquel I'algorithme va apprendre ;

» — L’algorithme d’apprentissage, qui est la procédure que 'on fait tourner sur ces
données pour produire un modele. On appelle entrainement le tfait de faire tourner un
algorithme d’apprentissage sur un jeu de données.

- apprendre H I produire
TR

APPRENTISSAGE automatique : Mode¢le

Exemple : un probléme que pourrait rencontrer un agent immobilier : faire
estimer un bien au prix de vente le plus conforme au marché immobilier. Pour
réaliser cette évaluation, notre professionnel de I'immobilier va effectuer deux
étapes :

il recueille des données sur les caractéristiques clés du bien immobilier
(par exemple : 'emplacement géographique, la superficie, I'état général,
etc.) ;

il procéde ensuite a une évaluation fondée sur des données publiques
disponibles, ainsi que sur sa propre expertise immobiliére.

Au fil du temps, 1l va pouvoir développer sa connaissance du marché qu’il cible.

Ainsl, 'agent, fort de toutes ses connaissances immobilieres et des données
disponibles, va devenir de plus en plus apte a fournir une évaluation de bien.
On pourrait dire qu’il a développé un modele d’évaluation des prix.

r s)
Superficie Quartier Données du
Etat général| Emplacement | marché

Le Modéle d'Evaluation de I'Agent Immobilier

Etape 2:
Evaluation

Etape 1:
Collecte de données

Modele Mental
Expertise développée
Regles d'évaluation
, Expérience accumulée
.

Estimation du Prix

Prix conforme
au marché

b
i 2
Potentiel Logiciel 4 L
Documentation des régles Rl et
pour création de logiciel

Amélioration continue du modele

Fonctionnement du machine learning

» Le machine learning consiste a entrainer un algorithme au sein d’'une base d’apprentissage. On lui fait
reconnaitre des motifs récurrents ou « patterns » pour aboutir a un modele réalisant des prédictions.

» Une fois ce modele développé, celui-ci est sollicité par la machine lors de traitements de nouvelles données, pour
aboutir a une réponse ou a une action finale. Au fur et a mesure des entrainements successifs et grace a
I’évolution du contexte, I'algorithme améliore ses performances.

» Tout ce processus a lieu automatiquement et vous n’aurez qu’a renseigner les données initiales pour
I'apprentissage ! Plus on le nourrit et plus il devient précis.

AR

Données d'apprentissage APPRENTISSAGE
........ — T&/

l

\M

‘entr r ons @
o —@)

=) ﬂ ,l\ T

Machine Learning (Apprentissage automatique)

|.Données comme exemples 2.Apprentissage a partir des données
d'apprentissage

Si un fruit est rouge et rond, c'est
peut-étre une pomme

sssssssssssssssssss
orange raisin myrtille

aaaaaa

3. Evaluation des réponses

L J _ 4. Amélioration continue

nouvelle image qu'elle n'a jamais vue

Introduction a la Modélisation Prédictive

La modélisation prédictive, ou Predictive Modeling en anglais, regroupe un ensemble de méthodes permettant de
collecter et d’analyser des données définies, de maniere a les interpréter pour en déduire des pronostics
concernant des tendances futures, des événements a venir ou bien le comportement des consommateurs a 'avenir.

La modélisation prédictive consiste a utiliser des données historiques pour anticiper des comportements ou des
résultats futurs. Cette approche s’appuie sur des outils mathématiques et des algorithmes pour fournir des
insights exploitables.

Imaginons que vous soyez responsable des données d'une plateforme de contenu en ligne dont le business model
repose sur le nombre d'abonnements souscrits. On vous pose 2 questions :

» Quel est le profil des utilisateurs qui s'abonnent ? — La modélisation statistique.

» Comment prédire si un nouvel utilisateur va s'abonner ?— La modélisation prédictive (machine learning)

Marché : Prévision de la demande et des prix de vente
Comptabilité : Prévision des flux de trésorerie /\/\/ -
Economie : Prévision du taux de chémage ou de croissance /\/\/

Dataset

Tout modele prédictit repose sur un jeu de données. Sans données, pas de Machine
Learning.

Comme le suggere la définition proposée par Wikipedia, les algorithmes de
I'apprentissage automatique sont basés sur des données. On parle aussi
d’échantillons (samples), d’observations, ou d’exemples. — données (dataset).

Deux grandes familles de jeux de données peuvent étre utilisées :

— les données étiquetées : chaque observation x,, est fournie avec & x | o¥
une étiquette (label) y, que I'on cherche a prédire ; ié_; Lapin_

| |4p @
— les données non-étiquetées : comme le nom l'indique, - x | |
aucune étiquette n’est fournie. j '

Dataset

Dans l'apprentissage supervise le dataSet contient
toujours deux types de variables :
La variable cible, sujet de la prédiction (y : Target).

Les autres variables potentiellement prédictrices (x : Features).

Par exemple, prenons un jeu de données comprenant
'age, la taille et le poids d'une centaine de collégiens. Si
on souhaite prédire le poids des enfants en fonction de
leur taille et de leur age, la variable cible sera le poids et
les variables prédictrices seront l'age et la taille.

taille

151.13

150.62

149.86

144.78

Technique de la Modélisation Prédictive

Régression linéaire

» Modele qui prédit une valeur numérique continue a partir de variables explicatives, en
supposant une relation linéaire entre elles.

» Exemple : prédire le prix d’'une maison en fonction de sa surtface.

K-Nearest Neighbors (k-NN)

» Algorithme de classification ou régression qui prédit la sortie d’'un point en se basant
sur les k points les plus proches dans les données d’entrainement.

» Exemple : prédire si un client achétera (Oui/Non) selon les comportements de ses k
voisins les plus proches.

Technique de la Modélisation Prédictive - Régression
linéaire

La régression linéaire est une méthode statistique utilisée pour modéliser la
relation entre une variable dépendante (y) et une ou plusieurs variables

()-

[’objectif est de trouver une relation linéaire qui permet de prédire les
valeurs futures de y a partir de x .

Selon qu'il y a une ou plusieurs variables mdependantes on distingue l'analyse
de régression linéaire simple et I'analyse de régression linéaire multiple.

Simple Linear Regression Multiple Linear Regression

TS
O— & ;%

Technique de la Modélisation Prédictive - Régression
linéaire
Régression Linéaire Simple

Une seule variable indépendante est utilisée pour prédire y.

Exemple : Prédire le prix d’'une action en fonction du

Formule

y=Po+ piz+e

ou:
e [3p :intercept (valeur de y quand = = 0),

e [3; : coefficient de régression (pente de la droite),

e ¢ :terme d'erreur (représente les variations non expliquées).

Technique de la Modélisation Prédictive - Régression
linéaire
Régression Linéaire Simple
L'objectit d'une régression linéaire simple est de prédire la valeur d'une variable dépendante en
fonction d'une variable indépendante.

Plus la relation linéaire entre la variable indépendante et la variable dépendante est grande, plus la
prédiction est précise.
Visuellement, la relation entre les variables peut étre représentée par un diagramme de dispersion.

Plus la relation linéaire entre les variables dépendantes et indépendantes est importante, plus les
points de données se situent sur une ligne droite

Linear relationship

Technique de la Modélisation Prédictive - Régression
linéaire

Régression linéaire multiple

» Plusieurs variables indépendantes sont utilisées pour prédire ¥.

» Exemple : Prédire le rendement d’un porteteuille basé sur plusieurs tacteurs
économiques ().

» Formule :

y=5ﬂ+ﬁ1$1+ﬁ2$2+"'+ﬁﬂ$ﬂ_+f

ou:

® I.T9,...,I, :variables explicatives.

Technique de la Modélisation Prédictive - Régression
linéaire
Régression linéaire multiple

Contrairement a la régression linéaire simple, la régression linéaire multiple permet
de prendre en compte plus de deux variables indépendantes.

La variable a estimer est appelée variable dépendante (critere). Les variables utilisées
pour la prédiction sont appelées variables (prédicteurs).

La régression linéaire multiple est fréquemment utilisée dans la recherche sociale
empirique ainsl que dans les études de marché. Dans ces deux domaines, il est
intéressant de déterminer l'influence de diftérents facteurs sur une variable. Par
exemple, quels sont les déterminants qui influencent la santé ou le comportement
d'achat d'une personne ?

Simple Linear Multiple Linear
Regression Regression

?3=b*m+a - ’gzbl'$1—|—b2'$2+...—{—bk-xk—}—a

Régression : Exemple illustratif

Imaginez que vous souhaitiez prédire le prix d’'une maison en fonction de sa
surface habitable.

Pour ce faire, on montre des exemples de maisons a notre machine.

Voici une maison, sa surface habitable est de 100 m2 et son
prix est de 252 000 euros.

100m2 —p 252K

Régression : Exemple illustratif

Dans l'apprentissage supervisé, ces exemples de questions/réponses sont

)
présentés a la machine sous forme de jeu de données (X, Y), ou X représente
les variables d’entrée, et Y la sortie attendue.

X Y

a2 | asa
L ARTK
ag a?ak
a3 | 234

100 252K

110 200k

Régression : Exemple illustratif

Grace a ce Jeu de données, la Machine est capable d’apprendre un modéle
permettant de prédire la valeur de Y en fonction de X. Pour ce faire, elle
etftectue une auto-évaluation en recherchant le modele qui lui oftre les
meilleures performances par rapport au jeu de données fourni.

Prix vs Surface

300

-
prell Les données
180 =

Prix
170 =

260 =}

[] [] []]] [] [] []
400 925 G950 975 Woo YW0is WSO 1075

Surface

(t)

Régression : Exemple illustratif

Une fois ce modele développé, 1l est possible de s’en servir pour taire de
futures prédictions.

Par exemple, s1 nous avons une nouvelle maison, dont la surtace habitable est
de 105 m2 :

Prix vs Surfoce

Prix = 2% ! oD

Nouvelle
Maison

Surface: 105 m2

A¥E

280 =

Prix
70 -

260 =

L] L] L] [] 1 [} [] L}
90 91§ 950 975 oo is \wso) w7s

Alors notre machine peut utiliser notre modele pour prédire le prix de cette nouvelle
maison.

Régression

— 1. Prévision du cours d'une action

— 2. Evaluation du risque de crédit

— 3. Modélisation de la relation risque-rendement (CAPM)
— 4. Prévision des taux d'intérét

— 5. Prévision des ventes

— 6. Prévision du bénéfice net

— 7. Estimation des amortissements futurs

— 8. Prévision du budget de fonctionnement

— 9. Détection d’anomalies comptables

LAB

Apprendre a utiliser la régression linéaire multiple pour prédire le nombre de
ventes en fonction des dépenses publicitaires sur diftérents canaux ('T'V, radio,
journaux).

journaux

FIN

